Artículos de revistas
A Recombination Point Is Conserved In The Mitochondrial Genome Of Higher Plant Species And Located Downstream From The Cox2 Pseudogene In Solanum Tuberosum L
Registro en:
Genetics And Molecular Biology. , v. 29, n. 1, p. 83 - 89, 2006.
14154757
10.1590/S1415-47572006000100017
2-s2.0-33645023351
Autor
Tada S.F.S.
Souza A.P.
Institución
Resumen
The potato (Solanum tuberosum L.) mitochondrial cox3/sdh4/pseudo-cox2 gene cluster has previously been identified by heterologous hybridization using a Marchantia polymorpha sdh4 probe. In our present study we used Southern blotting using sdh4 and cox2 probes to show that the sdh4 and cox2 genes are clustered in the mitochondria of potato, soybean and pea. Northern blotting revealed cotranscription of sdh4 and cox2 in potato but not in cauliflower, indicating that these genes are not clustered in cauliflower. A putative recombination point was detected downstream of the cox2 pseudogene (pseudo-cox2) in potato mitochondrial DNA (mtDNA). This sequence corresponds to a 32 bp sequence which appears to be well-conserved and is adjacent to the terminals of some mitochondrial genes in Citrullus lanatus, Beta vulgaris and Arabidopsis thaliana and is probably involved in the genic rearrangements. It is possible the potato mtDNA pseudo-cox2 gene was generated by recombination during evolution in the same way as that of several other mitochondrial genes and remains as an inactive partial copy of the functional cox2 which was also detected in potato mtDNA. Copyright by the Brazilian Society of Genetics. 29 1 83 89 Adams, K.L., Song, K., Roessler, P.G., Nugent, J.M., Doyle, J.L., Doyle, J.J., Palmer, J.D., Intracellular gene transfer in action: Dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes (1999) Proc Natl Acad Sci USA, 96, pp. 13863-13868 Adams, K.L., Rosenblueth, M., Qiu, Y.-L., Palmer, J.D., Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution (2001) Genetics, 158, pp. 1289-1300 Ayliffe, M.A., Scott, N.S., Timmis, J.N., Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants (1998) Mol Biol Evol, 15, pp. 738-745 Breiman, A., Galun, E., Nuclear-mitochondrial interrelation in angiosperms (1990) Plant Science, 71, pp. 3-19 Brennicke, A., Grohmann, L., Hiesel, R., Knoop, V., Schuster, W., The mitochondrial genome on its way to the nucleus: Different stages of gene transfer in higher plants (1993) FEBS Lett, 325, pp. 140-145 Burger, G., Gray, M.W., Lang, B.F., Mitochondrial genomes: Anything goes (2003) Trends Genet, 19, pp. 709-716 Ceci, L.R., Saiardi, A., Siculella, L., Quagliariello, C., A tRNA Val(GAC) gene of chloroplast origin in sunflower mitochondria is not transcribed (1993) Plant Mol Biol, 23, pp. 727-736 Gray, M.W., Lang, B.F., Cedergren, R., Golding, G.B., Lemieux, C., Sankoff, D., Turmel, M., Burger, G., Genome structure and gene content in protist mitochondrial DNAs (1998) Nucl Acids Res, 26, pp. 865-878 Gray, M.W., Burger, G., Lang, B.F., Mitochondrial evolution (1999) Science, 283, pp. 476-1481 Hanson, M.R., Folkerts, O., Structure and function of the higher plant mitochondrial genome (1992) Internat Rev Citol, 141, pp. 129-165 Kanazawa, A., Tozuka, A., Shimamoto, Y., Sequence variation of chloroplast DNA that involves EcoRI and ClaI restriction site polymorphisms in soybean (1998) Genes Genet Syst, 73, pp. 111-119 Kubo, T., Nishizawa, S., Sugawara, A., Itchoda, N., Estiati, A., Mikami, T., The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA Cys (GCA) (2000) Nucl Acids Res, 28, pp. 2571-2576 Laroche, J., Li, P., Maggia, L., Bousquet, J., Molecular evolution of angiosperm mitochondrial introns and exons (1997) Proc Natl Acad Sci USA, 94, pp. 5722-5727 Lilly, L.W., Havey, M.J., Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of Cucumber (2001) Genetics, 159, pp. 317-328 Lonsdale, D.M., A review of the structure and organization of the mitochondrial genome of higher plants (1984) Plant Mol Biol, 3, pp. 201-206 Lupold, D.S., Caoile, A.G.F.S., Stern, D.B., Genomic context influences the activity of maize mitochondrial cox2 promoters (1999) Proc Natl Acad Sci USA, 96, pp. 11670-11675 Mackenzie, S., McIntosh, L., Higher plant mitochondria (1999) Plant Cell, 11, pp. 571-585 Nedelcu, A.M., Lee, R.W., Short repetitive sequences in green algal mitochondrial genomes: Potential roles in mitochondrial genome evolution (1998) Mol Biol Evol, 15, pp. 690-701 Newton, K.J., Plant mitochondrial genomes: Organization, expression and variation (1988) Ann Rev Plant Physiol Plant Mol Biol, 39, pp. 503-532 Ohta, N., Sato, N., Kuroiwa, T., Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence (1998) Nucl Acids Res, 26, pp. 5190-5198 Sambrook, J., Fritsch, E.F., Maniats, T., (1989) Molecular Cloning: A Laboratory Manual, , 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, V. 1 Schuster, W., Brennicke, A., Interorganellar sequence transfer: Plant mitochondrial DNA is nuclear, is plastid, is mitochondrial (1988) Plant Sci, 54, pp. 1-10 Siqueira, S.F., Dias, S.M.G., Lejeune, B., Souza, A.P., Marchantia polymorpha mitochondrial orf identifies transcribed sequence in angiosperm mitochondrial genome (2001) Biochim Biophys Acta, 1520, pp. 203-211 Städler, T., Delph, L.F., Ancient mitochondrial haplotypes and evidence for intragenic recombination in a gynodioecious plant (2002) Proc Natl Acad Sci USA, 99, pp. 11730-11735 Stern, D.B., Palmer, J.D., Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants (1984) Proc Natl Acad Sci USA, 81, pp. 1946-1950 Stern, D.B., Newton, K.J., Isolation of plant mitochondrial RNA (1986) Methods Enzymol, 118, pp. 488-496 Stupar, R.M., Lilly, J.W., Town, C.D., Cheng, Z., Kaul, S., Buell, C.R., Jiang, J., Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: Implication of potential sequencing errors caused by large-unit repeats (2001) Proc Natl Acad Sci USA, 98, pp. 5099-5103 Subramanian, S., Fallahi, M., Bonen, L., Truncated and dispersed rp12 and rps19 pseudogenes are co-transcribed with neighboring downstream genes in wheat mitochondria (2001) Curr Genet, 39, pp. 264-272 Suzuki, T., Kawano, S., Sakai, A., Hirai, A., Kuroiwa, T., Variability of mitochondrial subgenomic molecules in the meristematic cells of higher plants (1996) Genes Genet Syst, 71, pp. 329-333 Turmel, M., Otis, C., Lemieux, C., The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: Insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants (2002) Proc Natl Acad Sci USA, 99, pp. 11275-11280 Unseld, M., Marienfeld, J.R., Brandt, P., Brennicke, A., The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366924 nucleotides (1997) Nature Genet, 15, pp. 57-61 Wissinger, B., Schuster, W., Brennicke, A., Trans splicing in Oenothera mitochondria: Nad1 mRNAs are edited in exon and trans-splicing group II intron sequences (1991) Cell, 65, pp. 473-482