dc.creator | Segre N. | |
dc.creator | Ostertag C. | |
dc.creator | Monteiro P.J.M. | |
dc.date | 2006 | |
dc.date | 2015-06-30T18:16:43Z | |
dc.date | 2015-11-26T14:28:39Z | |
dc.date | 2015-06-30T18:16:43Z | |
dc.date | 2015-11-26T14:28:39Z | |
dc.date.accessioned | 2018-03-28T21:31:51Z | |
dc.date.available | 2018-03-28T21:31:51Z | |
dc.identifier | | |
dc.identifier | Materials Research. , v. 9, n. 3, p. 311 - 320, 2006. | |
dc.identifier | 15161439 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-33750515900&partnerID=40&md5=a62fab080dbbf42404c87f89f51441ea | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/103799 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/103799 | |
dc.identifier | 2-s2.0-33750515900 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1246650 | |
dc.description | Tire rubber particles (NaOH-treated and untreated) were investigated as possible crack stabilizer and toughness enhancer when added to cement paste through in situ crack propagation measurements using two different types of cement, type I/II and an Interground polypropylene Fiber Cement (IFC). Crack deflection and crack bridging were observed in specimens with untreated rubber in cement type I/II. Crack tip mechanisms associated with crack pinning and crack arrest were present in type I/II cement and IFC with treated rubber particles. Crack tip mechanisms in IFC with treated rubber lead to the increase in CMOD at the ultimate load level. Crack wake mechanisms in IFC with untreated or treated rubber lead to strain hardening and strain softening behavior. Crack wake bridging mechanisms were replaced by multiple cracking mechanisms in the IFC specimens with treated rubber. The IFC specimens with untreated rubber inclusions provided the best results with respect to toughness enhancement. | |
dc.description | 9 | |
dc.description | 3 | |
dc.description | 311 | |
dc.description | 320 | |
dc.description | Lee, B.I., Burnett, L., Miller, T., Postage, B., Cuneo, J., Tyre rubber/cement matrix composites (1993) Journal of Materials Science Letters, 12 (13), pp. 967-968 | |
dc.description | Eldin, N.N., Senouci, A.B., Observations on rubberized concrete behavior (1993) Cement, Concrete and Aggregates, 15 (1), pp. 74-84 | |
dc.description | Toutanji, H.A., The use of rubber tire particles in concrete to replace mineral aggregates (1996) Cement and Concrete Composites, 18 (2), pp. 135-139 | |
dc.description | Raghavan, D., Huynh, H., Ferraris, C.F., Workability, mechanical properties and chemical stability of a recycled tyre rubber-filled cementitious composite (1998) Journal of Materials Science, 33 (7), pp. 1745-1752 | |
dc.description | Li, Z., Li, F., Li, J.S.L., Properties of concrete incorporating rubber tyre particles (1998) Magazine of Concrete Research, 50 (4), pp. 297-304 | |
dc.description | Bignozzi, M.C., Saccani, A., Sandrolini, F., New polymer mortars containing polymeric wastes. Part 1. Microstructure and mechanical properties (2000) Composites A, 31 (2), pp. 97-109 | |
dc.description | Raghavan, D., Study of rubber-filled cementitious composites (2000) Journal of Applied Polymer Science, 77 (4), pp. 934-942 | |
dc.description | Nehdi, M., Khan, A., Cementitious composites containing recycled tire rubber: An overview of engineering properties and potential applications (2001) Cement, Concrete and Aggregates, 23 (1), pp. 3-10 | |
dc.description | Bignozzi, M.C., Saccani, A., Sandrolini, F., New polymer mortars containing polymeric wastes. Part 2. Dynamic mechanical and dielectric behaviour (2002) Composites A, 33 (2), pp. 205-211 | |
dc.description | Hernandez-Olivares, F., Barluenga, G., Bollati, M., Witoszek, B., Static and dynamic behaviour of recycled tyre rubber-filled concrete (2002) Cement and Concrete Research, 32 (10), pp. 1587-1596 | |
dc.description | Siddique, R., Naik, T.R., Properties of concrete scrap-tire rubber: An overview (2004) Waste Management, 24 (6), pp. 563-569 | |
dc.description | Huang, B., Li, G., Pang, S.-S., Eggers, J., Investigation into waste tire rubber-filled concrete (2004) Journal of Materials in Civil Engineering, 16 (3), pp. 187-194 | |
dc.description | Segre, N., Joekes, I., Galves, A.D., Rodrigues, J.A., Rubber-mortar composites: Effect of composition on properties (2004) Journal of Materials Science, 39 (10), pp. 3319-3327 | |
dc.description | Lange, F.F., The interaction of a crack front with a second phase dispersion (1970) Philosophical Magazine, 22 (179), pp. 983-992 | |
dc.description | Green, D.J., Fracture toughness predictions for crack bowing in brittle particulate composites (1983) Journal of the American Ceramic Society, 66 (1), pp. C4-C5 | |
dc.description | Evans, A.G., The strength of brittle materials containing second-phase dispersions (1972) Philosophical Magazine, 26 (6), pp. 1327-1344 | |
dc.description | Ostertag, C.P., In-situ crack propagation in pressureless sintered fiber reinforced composites (1995) Composites Engineering, 5 (10-11), pp. 1317-1329 | |
dc.description | Segre, N., Joekes, I., Use of tire rubber particles as addition to cement paste (2000) Cement and Concrete Research, 30 (9), pp. 1421-1425 | |
dc.description | Segre, N., Monteiro, P.J.M., Sposito, G., Surface characterization of recycled tire rubber to be used in cement paste matrix (2002) Journal of Colloid and Interface Science, 248 (2), pp. 521-523 | |
dc.description | Ostertag, C.P., Yi, C.K., Vondran, G., Tensile strength enhancement in Interground Fiber Cement composites (2001) Cement and Concrete Composites, 23 (4-5), pp. 419-425 | |
dc.description | Ostertag, C.P., Yi, C.K., Quasi-brittle behavior of cementitious matrix composites (2000) Materials Science and Engineering A, 278 (1-2), pp. 88-95 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Materials Research | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | Effect Of Tire Rubber Particles On Crack Propagation In Cement Paste | |
dc.type | Artículos de revistas | |