dc.creatorSegre N.
dc.creatorOstertag C.
dc.creatorMonteiro P.J.M.
dc.date2006
dc.date2015-06-30T18:16:43Z
dc.date2015-11-26T14:28:39Z
dc.date2015-06-30T18:16:43Z
dc.date2015-11-26T14:28:39Z
dc.date.accessioned2018-03-28T21:31:51Z
dc.date.available2018-03-28T21:31:51Z
dc.identifier
dc.identifierMaterials Research. , v. 9, n. 3, p. 311 - 320, 2006.
dc.identifier15161439
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33750515900&partnerID=40&md5=a62fab080dbbf42404c87f89f51441ea
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103799
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103799
dc.identifier2-s2.0-33750515900
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246650
dc.descriptionTire rubber particles (NaOH-treated and untreated) were investigated as possible crack stabilizer and toughness enhancer when added to cement paste through in situ crack propagation measurements using two different types of cement, type I/II and an Interground polypropylene Fiber Cement (IFC). Crack deflection and crack bridging were observed in specimens with untreated rubber in cement type I/II. Crack tip mechanisms associated with crack pinning and crack arrest were present in type I/II cement and IFC with treated rubber particles. Crack tip mechanisms in IFC with treated rubber lead to the increase in CMOD at the ultimate load level. Crack wake mechanisms in IFC with untreated or treated rubber lead to strain hardening and strain softening behavior. Crack wake bridging mechanisms were replaced by multiple cracking mechanisms in the IFC specimens with treated rubber. The IFC specimens with untreated rubber inclusions provided the best results with respect to toughness enhancement.
dc.description9
dc.description3
dc.description311
dc.description320
dc.descriptionLee, B.I., Burnett, L., Miller, T., Postage, B., Cuneo, J., Tyre rubber/cement matrix composites (1993) Journal of Materials Science Letters, 12 (13), pp. 967-968
dc.descriptionEldin, N.N., Senouci, A.B., Observations on rubberized concrete behavior (1993) Cement, Concrete and Aggregates, 15 (1), pp. 74-84
dc.descriptionToutanji, H.A., The use of rubber tire particles in concrete to replace mineral aggregates (1996) Cement and Concrete Composites, 18 (2), pp. 135-139
dc.descriptionRaghavan, D., Huynh, H., Ferraris, C.F., Workability, mechanical properties and chemical stability of a recycled tyre rubber-filled cementitious composite (1998) Journal of Materials Science, 33 (7), pp. 1745-1752
dc.descriptionLi, Z., Li, F., Li, J.S.L., Properties of concrete incorporating rubber tyre particles (1998) Magazine of Concrete Research, 50 (4), pp. 297-304
dc.descriptionBignozzi, M.C., Saccani, A., Sandrolini, F., New polymer mortars containing polymeric wastes. Part 1. Microstructure and mechanical properties (2000) Composites A, 31 (2), pp. 97-109
dc.descriptionRaghavan, D., Study of rubber-filled cementitious composites (2000) Journal of Applied Polymer Science, 77 (4), pp. 934-942
dc.descriptionNehdi, M., Khan, A., Cementitious composites containing recycled tire rubber: An overview of engineering properties and potential applications (2001) Cement, Concrete and Aggregates, 23 (1), pp. 3-10
dc.descriptionBignozzi, M.C., Saccani, A., Sandrolini, F., New polymer mortars containing polymeric wastes. Part 2. Dynamic mechanical and dielectric behaviour (2002) Composites A, 33 (2), pp. 205-211
dc.descriptionHernandez-Olivares, F., Barluenga, G., Bollati, M., Witoszek, B., Static and dynamic behaviour of recycled tyre rubber-filled concrete (2002) Cement and Concrete Research, 32 (10), pp. 1587-1596
dc.descriptionSiddique, R., Naik, T.R., Properties of concrete scrap-tire rubber: An overview (2004) Waste Management, 24 (6), pp. 563-569
dc.descriptionHuang, B., Li, G., Pang, S.-S., Eggers, J., Investigation into waste tire rubber-filled concrete (2004) Journal of Materials in Civil Engineering, 16 (3), pp. 187-194
dc.descriptionSegre, N., Joekes, I., Galves, A.D., Rodrigues, J.A., Rubber-mortar composites: Effect of composition on properties (2004) Journal of Materials Science, 39 (10), pp. 3319-3327
dc.descriptionLange, F.F., The interaction of a crack front with a second phase dispersion (1970) Philosophical Magazine, 22 (179), pp. 983-992
dc.descriptionGreen, D.J., Fracture toughness predictions for crack bowing in brittle particulate composites (1983) Journal of the American Ceramic Society, 66 (1), pp. C4-C5
dc.descriptionEvans, A.G., The strength of brittle materials containing second-phase dispersions (1972) Philosophical Magazine, 26 (6), pp. 1327-1344
dc.descriptionOstertag, C.P., In-situ crack propagation in pressureless sintered fiber reinforced composites (1995) Composites Engineering, 5 (10-11), pp. 1317-1329
dc.descriptionSegre, N., Joekes, I., Use of tire rubber particles as addition to cement paste (2000) Cement and Concrete Research, 30 (9), pp. 1421-1425
dc.descriptionSegre, N., Monteiro, P.J.M., Sposito, G., Surface characterization of recycled tire rubber to be used in cement paste matrix (2002) Journal of Colloid and Interface Science, 248 (2), pp. 521-523
dc.descriptionOstertag, C.P., Yi, C.K., Vondran, G., Tensile strength enhancement in Interground Fiber Cement composites (2001) Cement and Concrete Composites, 23 (4-5), pp. 419-425
dc.descriptionOstertag, C.P., Yi, C.K., Quasi-brittle behavior of cementitious matrix composites (2000) Materials Science and Engineering A, 278 (1-2), pp. 88-95
dc.languageen
dc.publisher
dc.relationMaterials Research
dc.rightsaberto
dc.sourceScopus
dc.titleEffect Of Tire Rubber Particles On Crack Propagation In Cement Paste
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución