dc.creatorde Andrade T.G.
dc.creatorPeterson K.R.
dc.creatorCunha A.F.
dc.creatorMoreira L.S.
dc.creatorFattori A.
dc.creatorSaad S.T.O.
dc.creatorCosta F.F.
dc.date2006
dc.date2015-06-30T18:14:49Z
dc.date2015-11-26T14:28:13Z
dc.date2015-06-30T18:14:49Z
dc.date2015-11-26T14:28:13Z
dc.date.accessioned2018-03-28T21:31:24Z
dc.date.available2018-03-28T21:31:24Z
dc.identifier
dc.identifierBlood Cells, Molecules, And Diseases. , v. 37, n. 2, p. 82 - 90, 2006.
dc.identifier10799796
dc.identifier10.1016/j.bcmd.2006.07.003
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33748785158&partnerID=40&md5=abfbbef4d5c66e783a2f21bbbd3a7447
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103670
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103670
dc.identifier2-s2.0-33748785158
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246538
dc.descriptionThe genetic mechanisms underlying the continued expression of the γ-globin genes during the adult stage in deletional hereditary persistence of fetal hemoglobin (HPFH) and δβ-thalassemias are not completely understood. Herein, we investigated the possible involvement of transcription factors, using the suppression subtractive hybridization (SSH) method as an initial screen to identify differentially expressed transcripts in reticulocytes from a normal and a HPFH-2 subject. Some of the detectable transcripts may participate in globin gene regulation. Quantitative real-time PCR (qRT-PCR) experiments confirmed the downregulation of ZHX2, a transcriptional repressor, in two HPFH-2 subjects and in a carrier of the Sicilian δβ-thalassemia trait. The chromatin remodeling factors ARID1B and TSPYL1 had a very similar pattern of expression with an incremental increase in HPFH and decreased expression in δβ-thalassemia. These differences suggest a mechanism to explain the heterocellular and pancellular distribution of fetal hemoglobin in δβ-thalassemia and deletional HPFH, respectively. Interestingly, α-globin mRNA levels were decreased, similar to β-globin in all reticulocyte samples analyzed. © 2006 Elsevier Inc. All rights reserved.
dc.description37
dc.description2
dc.description82
dc.description90
dc.descriptionWeatheral, D.J., Clegg, J.B., (2001) The Thalassemia Syndromes, , Oxford, Blackwell Science, Oxford
dc.descriptionForget, B.G., Molecular basis of hereditary persistence of fetal hemoglobin (1998) Ann. N. Y. Acad. Sci., 850, pp. 38-44
dc.descriptionBunn, H.F., Pathogenesis and treatment of sickle cell disease (1997) N. Engl. J. Med., 377, pp. 762-769
dc.descriptionJane, S.M., Understanding fetal globin gene expression: a step towards effective Hb F reactivation in haemoglobinopathies (1998) Br. J. Haematol., 102, pp. 415-422
dc.descriptionTownes, T.M., Behringer, R.R., Human globin locus activating region: role in temporal control (1990) Trends Genet., 6, pp. 219-223
dc.descriptionArcasoy, M.O., Romana, M., Fabry, M.E., High levels of human γ-globin gene expression in adult mice carrying a transgene of deletion-type hereditary persistence of fetal hemoglobin (1997) Mol. Cell. Biol., 17, pp. 2076-2089
dc.descriptionFeingold, E.A., Penny, L.A., Nienhuis, A.W., Forget, B.G., An olfactory receptor gene is located in the extended human β-globin gene cluster and is expressed in erythroid cells (1999) Genomics, 61, pp. 15-23
dc.descriptionKatsantoni, E.Z., Langeveld, A., Wai, A.W., Persistent gamma-globin expression in adult transgenic mice is mediated by HPFH-2, HPFH-3, and HPFH-6 breakpoint sequences (2003) Blood, 102, pp. 3412-3419
dc.descriptionHuisman, T., Schroeder, W., Efremov, G., The present status of the heterogeneity of fetal hemoglobin in β-thalassemia: an attempt to unify some observations in thalassemia and related conditions (1974) Ann. N. Y. Acad. Sci., 232, pp. 107-124
dc.descriptionVitale, M., Calzolari, R., Di Marzo, R., A region upstream of the human delta-globin gene shows a stage-specific interaction with globin promoters in erythroid cell lines (2001) Blood Cells Mol. Dis., pp. 874-881
dc.descriptionCalzolari, R., Mcmorrow, T., Yannoutsos, N., Deletion of a region that is a candidate for the difference between the deletion forms of hereditary persistence of fetal hemoglobin and δβ-thalassemia affects β- but not γ-globin gene expression (1999) EMBO J., 18, pp. 949-958
dc.descriptionXiang, P., Han, H., Barkess, G., Juxtaposition of the HPFH2 enhancer is not sufficient to reactivate the gamma-globin gene in adult erythropoiesis (2005) Hum. Mol. Genet., pp. 3047-3056
dc.descriptionDiatchenko, L., Lau, Y.F., Campbell, A.P., Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 6025-6030
dc.descriptionHenthorn, P., Smithies, O., Mager, D.L., Molecular analysis of deletions in the human β-globin gene cluster: deletion junctions and locations of breakpoints (1990) Genomics, 6, pp. 226-237
dc.descriptionCraig, J.E., Barnetson, R.A., Prior, J., Thein, Rapid detection of deletions causing δβ thalassemia and hereditary persistence of fetal hemoglobin by enzymatic amplification (1994) Blood, 86, pp. 1673-1682
dc.descriptionDe Andrade, T.G., Fattori, A., Saad, S.T.O., Molecular identification of Sicilian (δβ) thalassemia associated with β-thalassemia and hemoglobin S in Brazil (2002) Braz. J. Med. Biol. Res., 35, pp. 873-876
dc.descriptionDe Andrade, T.G., Saad, S.T.O., Sonatti, M.F., Simple fluorescent PCR method for detection of large deletions in the beta-globin gene cluster (2003) Am. J. Hematol., 72, pp. 225-227
dc.descriptionDacie, J.V., Lewis, S.M., (1984) Practical Haematology, , Churchill Livingstone, Edinburgh
dc.descriptionAlter, B.P., Goll, S.C., Frenov, G.D., Globin chain electrophoresis: a new approach to the determination of the Gγ/Aγ ratio of globin synthesis (1980) Br. J. Haematol., 44, pp. 525-534
dc.descriptionGoossens, M., Kan, Y.M., DNA analysis of hemoglobin disorders (1981) Methods Enzymol., 76, p. 805
dc.descriptionVandesompele, J., De Preter, K., Pattyn, F., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes (2002) Genome Biol., 3, p. 34
dc.descriptionBonafoux, B., Lejeune, M., Piquemal, D., Analysis of remnant reticulocyte mRNA reveals new genes and antisense transcripts expressed in the human erythroid lineage (2004) Haematologica, 89, p. 1434
dc.descriptionCrable, S.C., Hammond, S.M., Papes, R., Multiple isoforms of the KC1 cotransporter are expressed in sickle and normal erythroid cells (2005) Exp. Hematol., 33, pp. 624-631
dc.descriptionGubin, A., Njoroge, J.M., Bouffard, G.G., Gene expression in proliferating human erythroid cells (1999) Genomics, 59, pp. 168-177
dc.descriptionRussel, J.E., Morales, J., Liebhaber, S.A., The role of mRNA stability in the control of globin gene expression (1997) Prog. Nucleic Acids Res. Mol. Biol., 57, pp. 249-287
dc.descriptionChakalova, L., Osborne, C.S., Day, Y.-F., The Corfu deltabeta thalassemia deletion disrupts gamma-globin gene silencing and reveals post-transcriptional regulation of HbF expression (2005) Blood, 105, pp. 2154-2160
dc.descriptionSpilianakis, C.G., Lalioti, M.D., Town, T., Interchromosomal associations between alternatively expressed loci (2005) Nature, 35, pp. 637-645
dc.descriptionFraser, P., Engel, J.D., Constricting restricted transcription: the (actively?) shrinking web (2006) Genes Dev., 20, pp. 1379-1383
dc.descriptionOsborne, C.S., Chakalova, L., Brown, K.E., Active genes dynamically colocalize to shared sites of ongoing transcription (2004) Nat. Genet., 36, pp. 1065-1071
dc.descriptionRagoczy, T., Bender, M.A., Telling, A., The locus control region is required for association of the murine b-globin locus with engaged transcription factories during erythroid maturation (2006) Genes Dev., 20, pp. 1447-1457
dc.descriptionWang, X., Nagl, N.G., Wilskerd, D., Two related ARID family proteins are alternative subunits of human SWI/SNF complexes (2004) Biochem. J., 383, pp. 319-325
dc.descriptionNie, Z., Xue, Y., Yang, D., A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex (2000) Mol. Cell Biol., 20, pp. 8879-8888
dc.descriptionO'Neill, D., Yang, J., Erdjument-Bromage, H., Tissue-specific and developmental stage-specific DNA binding by a mammalian SWI/SNF complex associated with human fetal-to-adult globin gene switching (1999) Proc. Natl. Acad. Sci. U. S. A., 96, pp. 349-354
dc.descriptionO'Neill, D., Shoetz, S.S., Lopez, R.A., An Ikaros-containing chromatin-remodeling complex in adult-type erythroid cells (2000) Mol. Cell. Biol., 20, pp. 7572-7582
dc.descriptionBank, A., Regulation of human fetal hemoglobin: new players, new complexities (2006) Blood, 107, p. 435
dc.descriptionClose, J., Game, L., Clark, B., Genome annotation of a 1.5 Mb region of human chromosome 6q23 encompassing a quantitative trait locus for fetal hemoglobin expression in adults (2004) BMC Genomics, 5, p. 33
dc.descriptionRodriguez, P., Munroe, D., Prawitt, D., Functional characterization of human nucleosome assembly protein-2 (NAP1L4) suggests a role as a histone chaperone (1997) Genomics, 44, pp. 253-265
dc.descriptionKawata, H., Yamada, K., Shou, Z., Zinc-fingers and homeoboxes (ZHX) 2, a novel member of the ZHX family, functions as a transcriptional repressor (2003) Biochem. J., 373, pp. 747-757
dc.descriptionGarner, C., Silver, N., Best, S., Quantitative trait locus on chromosome 8q influences the switch from fetal to adult hemoglobin (2004) Blood, 104, pp. 2184-2186
dc.descriptionPerincheri, S., Dingle, R.W.C., Peterson, M.L., Hereditary persistence of alpha-fetoprotein and H19 expression in liver of BALB/cJ mice is due to a retrovirus insertion in the Zhx2 gene (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 396-401
dc.descriptionZhang, P., Basu, P., Redmond, L.C., A functional screen for Kruppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element (2005) Blood Cells Mol. Dis., pp. 227-235
dc.descriptionMazzocco, M., Maffei, M., Egeo, A., The identification of a novel human homologue of the SH3 binding glutamic acid-rich (SH3BGR) gene establishes a new family of highly conserved small proteins related to Thioredoxin Superfamily (2002) Gene, 291, pp. 233-239
dc.descriptionOldenborg, P.A., Zheleznyak, A., Fang, Y.F., Role of CD47 as a marker of self on red blood cells (2000) Science, 288, pp. 2051-2054
dc.descriptionPeterson, K.R., Li, Q.L., Clegg, C.H., Use of yeast artificial chromosomes (YACs) in studies of mammalian development: production of β-globin locus YAC mice carrying human globin developmental mutants (1995) Proc. Natl. Acad. Sci. U. S. A., 92, pp. 5655-5659
dc.descriptionPlant, K.E., Routledge, S.J., Proudfroot, N.J., Intergenic transcription in the human beta-globin gene cluster (2001) Mol. Cell Biol., 21, pp. 6507-6514
dc.descriptionDover, G.J., Smith, K.D., Chang, Y.C., Fetal hemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2 (1992) Blood, 80, pp. 816-824
dc.descriptionCraig, J.E., Rochette, J., Fisher, C.A., Dissecting the loci controlling haemoglobin production on chromosomes 11p and 6q by the regressive approach (1996) Nature Genetics, 12, pp. 58-64
dc.descriptionJiang, J., Best, S., Menzel, S., cMYB is involved in the regulation of fetal hemoglobin production in adults (2006) Blood
dc.languageen
dc.publisher
dc.relationBlood Cells, Molecules, and Diseases
dc.rightsfechado
dc.sourceScopus
dc.titleIdentification Of Novel Candidate Genes For Globin Regulation In Erythroid Cells Containing Large Deletions Of The Human β-globin Gene Cluster
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución