Artículos de revistas
Oral Administration Of S-nitroso-n-acretylcysteine Prevents The Onset Of Non Alcoholic Fatty Liver Disease In Rats
Registro en:
World Journal Of Gastroenterology. , v. 12, n. 12, p. 1905 - 1911, 2006.
10079327
2-s2.0-33645993874
Autor
De Oliveira C.P.M.S.
Simplicio F.I.
De Lima V.M.R.
Yuahasi K.
Lopasso F.P.
Alves V.A.F.
Abdalla D.S.P.
Carrilho F.J.
Laurindo F.R.M.
De Oliveira M.G.
Institución
Resumen
Aim: To evaluate the potential of S-nitroso-N-acetyl-cysteine (SNAC) in inhibition of lipid peroxidation and the effect of oral SNAC administration in the prevention of nonalcoholic fatty liver disease (NAFLD) in an animal model. Methods: NAFLD was induced in Wistar male r ats by choline-deficient diet for 4 wk. SNAC-treated animals (n=6) (1.4 mg/kg/day of SNAC, orally) were compared to 2 control groups: one (n=6) received PBS solution and the other (n=6) received NAC solution (7 mg/kg/d). Histological variables were semiquantitated with respect to macro and microvacuolar fat changes, its zonal distribution, foci of necrosis, portal and perivenular fibrosis, and inflammatory infiltrate with zonal distribution. LOOHs from samples of liver homogenates were quantified by HPLC. Nitrate levels in plasma of portal vein were assessed by chemiluminescence. Aqueous low-density lipoprotein (LDL) suspensions (200 μg protein/mL) were incubated with CUCl2 (300 μmol/L) in the absence and presence of SNAC (300 μmol/L) for 15 h at 37 °C. Extent of LDL oxidation was assessed by fluorimetry. Linoleic acid (LA) (18.8 μmol/L) oxidation was induced by soybean lipoxygenase (SLO) (0.056 μmol/L at 37 °C in the presence and absence of N-acetylcysteine (NAQ and SNAC (56 and 560 μmol/L) and monitored at 234 nm. Results: Animals in the control group developed moderate macro and microvesicular fatty changes in periportal area. SNAC-treated animals displayed only discrete histological alterations with absence of fatty changes and did not develop liver steatosis. The absence of NAFLD in the SNAC-treated group was positively correlated with a decrease in the concentration of LOOH in liver homogenate, compared to the control group (0.7±0.2 nmol/mg vs 3.2±0.4 nmol/mg protein, respectively, P<0.05), while serum levels of aminotransferases were unaltered. The ability of SNAC in preventing lipid peroxidation was confirmed in in vitro experiments using LA and LDL as model substrates. Conclusion: Oral admi nistration of SNAC prevents the onset of NAFLD in Wistar rats fed with choline-deficient diet. This effect is correlated with the ability of SNAC to block the propagation of lipid peroxidation in vitro and in vitro. © 2006 The WJG Press. All rights reserved. 12 12 1905 1911 McCullough, A.J., Update on nonalcoholic fatty liver disease (2002) J Clin Gastroenterol, 34, pp. 255-262 Marchesini, G., Brizi, M., Morselli-Labate, A.M., Bianchi, G., Bugianesi, E., McCullough, A.J., Forlani, G., Melchionda, N., Association of nonalcoholic fatty liver disease with insulin resistance (1999) Am Med, 107, pp. 450-455 Yang, S., Zhu, H., Li, Y., Lin, H., Gabrielson, K., Trush, M.A., Diehl, A.M., Mitochondrial adaptations to obesity-related oxidant stress (2000) Arch Biochem Biophys, 378, pp. 259-268 Curzio, M., Esterbauer, H., Dianzani, M.U., Chernotactic activity of hydroxyalkenals on rat neutrophils (1985) Int J Tissue React, 7, pp. 137-142 Lee, K.S., Buck, M., Houglum, K., Chojkier, M., Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression (1995) J Clin Invest, 96, pp. 2461-2468 Robertson, G., Leclercq, I., Farrell, G.C., Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress (2001) Am J Physiol Gastrointest Liver Physiol, 281, pp. G1135-G1139 Lapenna, D., Ciofani, G., Pierdomenico, S.D., Giamberardino, M.A., Cuccurullo, F., Dihydrolipoic acid inhibits 15-lipoxygenase-dependent lipid peroxidation (2003) Free Radic Biol Med, 35, pp. 1203-1209 Kuhn, H., Borchert, A., Regulation of enzymatic lipid peroxidation: The interplay of peroxidizing and peroxide reducing enzymes (2002) Free Radic Biol Med, 33, pp. 154-172 Patel, R.P., Levonen, A., Crawford, J.H., Darley-Usmar, V.M., Mechanisms of the pro- and anti-oxidant actions of nitric oxide in atherosclerosis (2000) Cardiovasc Res, 47, pp. 465-474 Platis, I.E., Ermacora, M.R., Fox, R.O., Oxidative polypeptide cleavage mediated by EDTA-Fe covalently linked to cysteine residues (1993) Biochemistry, 32, pp. 12761-12767 Rubbo, H., Darley-Usmar, V., Freeman, B.A., Nitric oxide regulation of tissue free radical injury (1996) Chem Res Toxicol, 9, pp. 809-820 Hogg, N., Kalyanaraman, B., Nitric oxide and lipid peroxidation (1999) Biochim Biophys Acta, 1411, pp. 378-384 Violi, F., Marino, R., Milite, M.T., Loffredo, L., Nitric oxide and its role in lipid peroxidation (1999) Diabetes Metab Res Rev, 15, pp. 283-288 Giustarini, D., Milzani, A., Colombo, R., Dalle-Donne, I., Rossi, R., Nitric oxide and S-nitrosothiols in human blood (2003) Clin Chim Acta, 330, pp. 85-98 Stamler, J.S., Singel, D.J., Loscalzo, J., Biochemistry of nitric oxide and its redox-activated forms (1992) Science, 258, pp. 1898-1902 Jaworski, K., Kinard, F., Goldstein, D., Holvoet, P., Trouet, A., Schneider, Y.J., Remacle, C., S-nitrosothiols do not induce oxidative stress, contrary to other nitric oxide donors, in cultures of vascular enclothelial or smooth muscle cells (2001) Eur J Pharmacol, 425, pp. 11-19 Ricardo, K.F., Shishido, S.M., de Oliveira, M.G., Krieger, M.H., Characterization of the hypotensive effect of S-nitroso-N-acetylcysteine in normotensive and hypertensive conscious rats (2002) Nitric Oxide, 7, pp. 57-66 Von Sonntag, C., Free-radical reactions involving thiols and disulphides (1990) Sulfur-centered Reactive Intermediates in Chemistry and Biology., pp. 359-366. , C. Chatgilialoglu, K.-D. Asmus (Eds.), New York: Plenum Press Wardman, P., von Sonntag, C., Kinetic factors that control the fate of thiyl radicals in cells (1995) Methods Enzymol, 251, pp. 31-45 Kashyap, M.K., Yadav, V., Sherawat, B.S., Jain, S., Kumari, S., Khullar, M., Sharma, P.C., Nath, R., Different antioxidants status, total antioxidant power and free radicals in essential hypertension (2005) Mol Cell Biochem, 277, pp. 89-99 Stocker, P., Lesgards, J.F., Vidal, N., Chalier, F., Prost, M., ESR study of a biological assay on whole blood: Antioxidant efficiency of various vitamins (2003) Biochim Biophys Acta, 1621, pp. 1-8 Gilbert, B.C., Marshall, P.D.R., Norman, R.O.C., Pineda, N., Willians, P.S., Electron spin resonance studies. The generation and reactions of the t-butoxyl radical in aqueous solution (1981) J Chem Soc Perkin Trans II, 10, pp. 1392-1400 Ewing, J.F., Janero, D.R., Specific S-nitrosothiol (thionitrite) quantification as solution nitrite after vanadium(III) reduction and ozone-chemiluminescent detection (1998) Free Radic Biol Med, 25, pp. 621-628 Steinbrecher, U.P., Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products (1987) J Biol Chem, 262, pp. 3603-3608 Rubbo, H., Trostchansky, A., Botti, K., Batthyany, C., Interactions of nitric oxide and peroxynitrite with low-density lipoprotein (2002) Biol Chem, 383, pp. 547-552 Oliveira, C.P., da Costa Gayotto, L.C., Tatai, C., Della Bina, B.I., Janiszewski, M., Lima, E.S., Abdalla, D.S., Laudanna, A.A., Oxidative stress in the pathogenesis of nonalcoholic fatty liver disease, in rats fed with a choline-deficient diet (2002) J Cell Mol Med, 6, pp. 399-406 Kockx, M.M., De Meyer, G.R., Bortier, H., de Meyere, N., Muhring, J., Bakker, A., Jacob, W., Herman, A., Luminal foam cell accumulation is associated with smooth muscle cell death in the intimal thickening of human saphenous vein grafts (1996) Circulation, 94, pp. 1255-1262 Yamamoto, Y., Brodsky, M.H., Baker, J.C., Ames, B.N., Detection and characterization of lipid hydroperoxides at picomole levels by high-performance liquid chromatography (1987) Anal Biochem, 160, pp. 7-13 Koteish, A., Diehl, A.M., Animal models of steatosis (2001) Semin Liver Dis, 21, pp. 89-104 Letteron, P., Fromenty, B., Terris, B., Degott, C., Pessayre, D., Acute and chronic hepatic steatosis lead to in vivo lipid peroxidation in mice (1996) J Hepatol, 24, pp. 200-208 Grattagliano, I., Vendemiale, G., Caraceni, P., Domenicali, M., Nardo, B., Cavallari, A., Trevisani, F., Altomare, E., Starvation impairs antioxidant defense in fatty livers of rats fed a choline-deficient diet (2000) J Nutr, 130, pp. 2131-2136 Padmaja, S., Huie, R.E., The reaction of nitric oxide with organic peroxyl radicals (1993) Biochem Biophys Res Commun, 195, pp. 539-544 Napolitano, A., Camera, E., Picardo, M., d'Ishida, M., Reactions of hydro(pero)xy derivatives of polyunsaturated fatty acids /esters with nitrite ions under acidic conditions. Unusual nitrosative breakdown of methyl 13-hydro(pero)xyoctadeca-9,11-dienoate to a novel 4-nitro-2-oximinoalk-3-enal product (2002) J Org Chem, 67, pp. 1125-1132 Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., Freeman, B.A., Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives (1994) J Biol Chem, 269, pp. 26066-26075 Lima, E.S., Di Mascio, P., Rubbo, H., Abdalla, D.S., Characterization of linoleic acid nitration in human blood plasma by mass spectrometry (2002) Biochemistry, 41, pp. 10717-10722 Lima, E.S., Di Mascio, P., Abdalla, D.S., Cholesteryl nitrolinoleate, a nitrated lipid present in human blood plasma and lipoproteins (2003) J Lipid Res, 44, pp. 1660-1666 de Oliveira, F.G., Rossi, C.L., de Oliveira, M.G., Saad, M.J., Velloso, L.A., Effect of vitamin E supplementation on antibody levels against malondialdehyde modified LDL in hyperlipidemic hamsters (2000) Cardiovasc Res, 47, pp. 567-573 Hamilton, C.A., Low-density lipoprotein and oxidised low-density lipoprotein: Their role in the development of atherosclerosis (1997) Pharmacol Ther, 74, pp. 55-72 de Oliveira, M.G., Shishido, S.M., Seabra, A.B., Morgon, N.H., Thermal stability of primary S-nitrosothiols: Roles of autocatalysis and structural effects on the rate of nitric oxide release (2002) J Phys Chem A, 106, pp. 8963-8970 Oliveira, C.P., Gayotto, L.C., Tatai, C., Della Nina, B.I., Lima, E.S., Abdalla, D.S., Lopasso, F.P., Carrilho, F.J., Vitamin C and vitamin E in prevention of Nonalcoholic Fatty Liver Disease (NAFLD) in choline deficient diet fed rats (2003) Nutr J, 2, p. 9 Senna, S.M., Moraes, R.B., Bravo, M.F., Oliveira, R.R., Miotto, G.C., Vidor, A.C., Bello-Klein, A., Homem de Bittencourt Jr., P.I., Effects of prostaglandins and nitric oxide on rat macrophage lipid metabolism in culture: Implications for arterial wall-leukocyte interplay in atherosclerosis (1998) Biochem Mol Biol Int, 46, pp. 1007-1018 Krieger, M.H., Santos, K.F., Shishido, S.M., Wanschel, A.C., Estrela, H.F., Santos, L., De Oliveira, M.G., Laurindo, F.R., Antiatherogenic effects of S-nitroso-N-acetylcysteine in hypercholesterolemic LDL receptor knockout mice (2006) Nitric Oxide, 14, pp. 12-20 Carvalho-Filho, M.A., Ueno, M., Hirabara, S.M., Seabra, A.B., Carvalheira, J.B., de Oliveira, M.G., Velloso, L.A., Saad, M.J., S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: A novel mechanism of insulin resistance (2005) Diabetes, 54, pp. 959-967