dc.creator | Biliotti L. | |
dc.creator | Mercuri F. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:53:55Z | |
dc.date | 2015-11-26T14:28:03Z | |
dc.date | 2015-06-25T17:53:55Z | |
dc.date | 2015-11-26T14:28:03Z | |
dc.date.accessioned | 2018-03-28T21:31:13Z | |
dc.date.available | 2018-03-28T21:31:13Z | |
dc.identifier | | |
dc.identifier | Bulletin Of The Brazilian Mathematical Society. Springer New York Llc, v. 45, n. 3, p. 433 - 452, 2014. | |
dc.identifier | 16787544 | |
dc.identifier | 10.1007/s00574-014-0057-7 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84919927957&partnerID=40&md5=d6b12af3e0a7ec5643bfd9419140f005 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/86555 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/86555 | |
dc.identifier | 2-s2.0-84919927957 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1246496 | |
dc.description | In this article we study properly discontinuous actions on Hilbert manifolds giving new examples of complete Hilbert manifolds with nonnegative, respectively nonpositive, sectional curvature with infinite fundamental group. We also get examples of complete infinite dimensional Kähler manifolds with positive holomorphic sectional curvature and infinite fundamental group in contrastwith the finite dimensional case and we classify abelian groups acting linearly, isometrically and properly discontinuously on Stiefel manifolds. Finally, we classify homogeneous Hilbert manifolds with constant sectional curvature. | |
dc.description | 45 | |
dc.description | 3 | |
dc.description | 433 | |
dc.description | 452 | |
dc.description | Atkin, C.J., The Hopf-Rinow theorem is false in infinite dimensions (1975) Bull. London Math. Soc., 7, pp. 261-266 | |
dc.description | Battaglia, F., A hypercomplex Stiefel manifold (1996) Differential Geom. Appl., 6 (2), pp. 121-128 | |
dc.description | Biliotti, L., Mercuri, F., Tausk, D., A note on tensor fields in Hilbert spaces (2002) An. Acad. Brasil. Ciênc., 74 (2), pp. 207-210 | |
dc.description | Biliotti, L., Properly Discontinuous isometric actions on the unith sphere of infinite dimensional Hilbert spaces (2004) Ann. Global Anal. Geom., 26, pp. 385-395 | |
dc.description | Biliotti, L., Exponential map of a weak Riemannian Hilbert manifold (2004) Illinois J. Math., 48, pp. 1191-1206 | |
dc.description | Biliotti, L., Exel, R., Piccione, P., Tausk, D., On the singularities of the exponentialmap in infinite dimensionalRiemannianmanifolds (2006) Math. Ann., 336 (2), pp. 247-267 | |
dc.description | Burghelea, D., Kuiper, N., Hilbertmanifolds (1968) Ann. of Math., 90, pp. 379-417 | |
dc.description | Cheeger, J., Ebin, D., (1975) Comparison theorems in Riemannian geometry, , North-Holland Publishing Co., Amsterdam: | |
dc.description | Dotti De Miatello, I.G., Extension of actions on Stiefel manifolds (1979) Pacific J. Math., 84 (1), pp. 155-169 | |
dc.description | Eells, J., A setting for global analysis (1966) Bull.Amer.Math. Soc., 72, pp. 751-807 | |
dc.description | Ekeland, I., The Hopf-Rinow Theorem in infinite dimension (1978) J. Diff. Geometry, 13, pp. 287-301 | |
dc.description | Edelman, A., Arias, T.A., Smith, S., The geometry of algorithms with orthogonality constraints (1998) Siam. J. Matrix Anal. Appl., 20 (2), pp. 303-353 | |
dc.description | Grossman, N., Hilbert manifolds without epiconjugate points (1965) Proc. of Amer. Math. Soc., 16, pp. 1365-1371 | |
dc.description | Harms, P., Mennucci, A., Geodesics in infinite dimensional Stiefel and Grassmannian manifolds (2013) C.R. Acad. Sci. Paris, 350, pp. 773-776 | |
dc.description | Huckleberry, A., Introduction to group actions in symplectic and complex geometry (2001) Infinite dimensional Kähler manifolds (Oberwolfach, 1995), pp. 1-129. , Birkhäuser, Basel: | |
dc.description | Klingenberg, W., (1982) Riemannian geometry, , De Gruyter studies in Mathemathics, New York: | |
dc.description | Kobayashi, S., Nomizu, K., Foundations of DifferentialGeometry. vol I (1963) Wiley-Interscience | |
dc.description | Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. vol II (1963) Wiley-Interscience | |
dc.description | I.M. James. The topology of Stiefel manifolds. London Mathematical Society Lecture Note Series 24, Cambridge University Press, Cambridge — New York — Melbourne, (1976), viii+168 ppLang, S., Fundamentals of DifferentialGeometry. Third Edition (1999) Graduate Texts in Mathematics, 191. , Springer-Verlang, New York: | |
dc.description | Misiolek, G., Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms (1993) Indiana Univ. Math. J., 42, pp. 215-235 | |
dc.description | Misiolek, G., Conjugate points in D µ(T 2) (1996) Proc. Amer. Math. Soc., 124, pp. 977-982 | |
dc.description | Misiolek, G., The exponential map on the free loop space is Fredholm (1997) Geom. Funct. Anal., 7, pp. 1-17 | |
dc.description | Misiolek, G., Exponential maps of Sobolev metrics on loop groups (1999) Proc. Amer. Math. Soc., 127, pp. 2475-2482 | |
dc.description | Neretin, Y.A., On Jordan angles and the Triangle Inequality in Grassmann Manifolds (2001) Geom. Dedicata, 86 (1-3), pp. 81-92 | |
dc.description | Rudin, W., (1991) Functional Analysis, , McGraw-Hill, Inc., New York: | |
dc.description | Tsukamoto, Y., On Kählerian manifolds with positive holomorphic sectional curvature (1957) Proc. Japan Acad., 33, pp. 333-335 | |
dc.description | Wolf, A.J., Sur la classification des variétés riemannienes homogénes á courbure constante (1960) Comptes rendus a l’Academie des Sciences á Paris, 250, pp. 3443-3445 | |
dc.description | Wolf, A.J., (2001) Spaces of constant curvature, , AMS Chelsea Publishing, Providence, RI: | |
dc.description | Wong, Y.-C., Sectional curvatures of Grassmann manifolds (1968) Proc. Natl. Acad. Sci. USA, 60, pp. 75-79 | |
dc.description | Younes, L., Michor, P., Shah, J., Mumford, D., A metric on shape space with explicit geodesics (2008) Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 19 (1), pp. 25-57 | |
dc.language | en | |
dc.publisher | Springer New York LLC | |
dc.relation | Bulletin of the Brazilian Mathematical Society | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Properly Discontinuous Actions On Hilbert Manifolds | |
dc.type | Artículos de revistas | |