dc.creatorBiliotti L.
dc.creatorMercuri F.
dc.date2014
dc.date2015-06-25T17:53:55Z
dc.date2015-11-26T14:28:03Z
dc.date2015-06-25T17:53:55Z
dc.date2015-11-26T14:28:03Z
dc.date.accessioned2018-03-28T21:31:13Z
dc.date.available2018-03-28T21:31:13Z
dc.identifier
dc.identifierBulletin Of The Brazilian Mathematical Society. Springer New York Llc, v. 45, n. 3, p. 433 - 452, 2014.
dc.identifier16787544
dc.identifier10.1007/s00574-014-0057-7
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84919927957&partnerID=40&md5=d6b12af3e0a7ec5643bfd9419140f005
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86555
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86555
dc.identifier2-s2.0-84919927957
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246496
dc.descriptionIn this article we study properly discontinuous actions on Hilbert manifolds giving new examples of complete Hilbert manifolds with nonnegative, respectively nonpositive, sectional curvature with infinite fundamental group. We also get examples of complete infinite dimensional Kähler manifolds with positive holomorphic sectional curvature and infinite fundamental group in contrastwith the finite dimensional case and we classify abelian groups acting linearly, isometrically and properly discontinuously on Stiefel manifolds. Finally, we classify homogeneous Hilbert manifolds with constant sectional curvature.
dc.description45
dc.description3
dc.description433
dc.description452
dc.descriptionAtkin, C.J., The Hopf-Rinow theorem is false in infinite dimensions (1975) Bull. London Math. Soc., 7, pp. 261-266
dc.descriptionBattaglia, F., A hypercomplex Stiefel manifold (1996) Differential Geom. Appl., 6 (2), pp. 121-128
dc.descriptionBiliotti, L., Mercuri, F., Tausk, D., A note on tensor fields in Hilbert spaces (2002) An. Acad. Brasil. Ciênc., 74 (2), pp. 207-210
dc.descriptionBiliotti, L., Properly Discontinuous isometric actions on the unith sphere of infinite dimensional Hilbert spaces (2004) Ann. Global Anal. Geom., 26, pp. 385-395
dc.descriptionBiliotti, L., Exponential map of a weak Riemannian Hilbert manifold (2004) Illinois J. Math., 48, pp. 1191-1206
dc.descriptionBiliotti, L., Exel, R., Piccione, P., Tausk, D., On the singularities of the exponentialmap in infinite dimensionalRiemannianmanifolds (2006) Math. Ann., 336 (2), pp. 247-267
dc.descriptionBurghelea, D., Kuiper, N., Hilbertmanifolds (1968) Ann. of Math., 90, pp. 379-417
dc.descriptionCheeger, J., Ebin, D., (1975) Comparison theorems in Riemannian geometry, , North-Holland Publishing Co., Amsterdam:
dc.descriptionDotti De Miatello, I.G., Extension of actions on Stiefel manifolds (1979) Pacific J. Math., 84 (1), pp. 155-169
dc.descriptionEells, J., A setting for global analysis (1966) Bull.Amer.Math. Soc., 72, pp. 751-807
dc.descriptionEkeland, I., The Hopf-Rinow Theorem in infinite dimension (1978) J. Diff. Geometry, 13, pp. 287-301
dc.descriptionEdelman, A., Arias, T.A., Smith, S., The geometry of algorithms with orthogonality constraints (1998) Siam. J. Matrix Anal. Appl., 20 (2), pp. 303-353
dc.descriptionGrossman, N., Hilbert manifolds without epiconjugate points (1965) Proc. of Amer. Math. Soc., 16, pp. 1365-1371
dc.descriptionHarms, P., Mennucci, A., Geodesics in infinite dimensional Stiefel and Grassmannian manifolds (2013) C.R. Acad. Sci. Paris, 350, pp. 773-776
dc.descriptionHuckleberry, A., Introduction to group actions in symplectic and complex geometry (2001) Infinite dimensional Kähler manifolds (Oberwolfach, 1995), pp. 1-129. , Birkhäuser, Basel:
dc.descriptionKlingenberg, W., (1982) Riemannian geometry, , De Gruyter studies in Mathemathics, New York:
dc.descriptionKobayashi, S., Nomizu, K., Foundations of DifferentialGeometry. vol I (1963) Wiley-Interscience
dc.descriptionKobayashi, S., Nomizu, K., Foundations of Differential Geometry. vol II (1963) Wiley-Interscience
dc.descriptionI.M. James. The topology of Stiefel manifolds. London Mathematical Society Lecture Note Series 24, Cambridge University Press, Cambridge — New York — Melbourne, (1976), viii+168 ppLang, S., Fundamentals of DifferentialGeometry. Third Edition (1999) Graduate Texts in Mathematics, 191. , Springer-Verlang, New York:
dc.descriptionMisiolek, G., Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms (1993) Indiana Univ. Math. J., 42, pp. 215-235
dc.descriptionMisiolek, G., Conjugate points in D µ(T 2) (1996) Proc. Amer. Math. Soc., 124, pp. 977-982
dc.descriptionMisiolek, G., The exponential map on the free loop space is Fredholm (1997) Geom. Funct. Anal., 7, pp. 1-17
dc.descriptionMisiolek, G., Exponential maps of Sobolev metrics on loop groups (1999) Proc. Amer. Math. Soc., 127, pp. 2475-2482
dc.descriptionNeretin, Y.A., On Jordan angles and the Triangle Inequality in Grassmann Manifolds (2001) Geom. Dedicata, 86 (1-3), pp. 81-92
dc.descriptionRudin, W., (1991) Functional Analysis, , McGraw-Hill, Inc., New York:
dc.descriptionTsukamoto, Y., On Kählerian manifolds with positive holomorphic sectional curvature (1957) Proc. Japan Acad., 33, pp. 333-335
dc.descriptionWolf, A.J., Sur la classification des variétés riemannienes homogénes á courbure constante (1960) Comptes rendus a l’Academie des Sciences á Paris, 250, pp. 3443-3445
dc.descriptionWolf, A.J., (2001) Spaces of constant curvature, , AMS Chelsea Publishing, Providence, RI:
dc.descriptionWong, Y.-C., Sectional curvatures of Grassmann manifolds (1968) Proc. Natl. Acad. Sci. USA, 60, pp. 75-79
dc.descriptionYounes, L., Michor, P., Shah, J., Mumford, D., A metric on shape space with explicit geodesics (2008) Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 19 (1), pp. 25-57
dc.languageen
dc.publisherSpringer New York LLC
dc.relationBulletin of the Brazilian Mathematical Society
dc.rightsfechado
dc.sourceScopus
dc.titleProperly Discontinuous Actions On Hilbert Manifolds
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución