dc.creatorFerreira C.P.
dc.creatorPulino P.
dc.creatorYang H.M.
dc.creatorTakahashi L.T.
dc.date2006
dc.date2015-06-30T18:13:41Z
dc.date2015-11-26T14:27:46Z
dc.date2015-06-30T18:13:41Z
dc.date2015-11-26T14:27:46Z
dc.date.accessioned2018-03-28T21:30:54Z
dc.date.available2018-03-28T21:30:54Z
dc.identifier
dc.identifierMathematical Population Studies. , v. 13, n. 4, p. 215 - 236, 2006.
dc.identifier8898480
dc.identifier10.1080/08898480600950515
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33749262350&partnerID=40&md5=8bf89cac3423fb1eea23eba4e3dc41dc
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103578
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103578
dc.identifier2-s2.0-33749262350
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246417
dc.descriptionThe dengue virus is transmitted in regions previously infested with the mosquito Aedes aegypti. To assess the spreading and establishment of the dengue disease vector, a mathematical model is developed that takes into account the diffusion and advection phenomena. A discrete model based on the cellular automata approach, which is a good framework to deal with small populations, is also developed to be compared with the continuouos modeling.
dc.description13
dc.description4
dc.description215
dc.description236
dc.descriptionBoccara, N., Roblin, O., Roger, M., Automata network predator-prey model with pursuit and evasion (1994) Phys. Rev. E, 50, pp. 4531-4541
dc.descriptionHiebeler, D., Stochastic spatial models: From simulations to mean field and local structure approximations (1997) J. Theor. Biol., 187, pp. 307-319. , [CROSSREF]
dc.descriptionJohnson, C., (1987) Numerical Solution of Partial Differential Equations By the Finite Element Method, , Cambridge: Cambridge University Press
dc.descriptionMonath, T.P., (1988) Arboviruses: Epidemiology and Ecology, , Boca Raton (Florida): CRC Press
dc.descriptionNewton, E.A.C., Reiter, P., A model of the transmission of dengue fever with evaluation on the impact of ultra-low volume (ulv) insecticide applications on dengue epidemics (1992) Am. J. Trop. Med. Hyg., 47 (6), pp. 709-720. , [INFOTRIEVE][CSA]
dc.descriptionQuarteroni, A., (2000) Modellistica Numerica Per Problemi Differenziali, , Berlin: Springer Verlag
dc.descriptionTakahashi, L.T., Maidana, M.A., Ferreira Jr., W.C., Pulino, P., Yang, H.M., Mathematical models for the Aedes aegypti dispersal dynamics: Travelling waves by wing and wind (2005) Bull. Math. Biol., 67, pp. 509-528. , [CSA][CROSSREF]
dc.descriptionToffoli, T., Margolus, N., (1987) Cellular Automata Machines: A New Environmental for Modeling, , Cambridge: MIT Press
dc.descriptionTrefethen, L.N., (1997) Numerical Linear Algebra, , Philadelphia: SIAM
dc.descriptionVeronesi, R., (1991) Doenças Infecciosas E Parasitárias, , (8th Edition). Rio de Janeiro: Guanabara Koogan
dc.descriptionWarren, K.S., Mahmoud, A.A.F., (1990) Tropical and Geographical Medicine, , (2nd Edition). New York: McGraw-Hill
dc.descriptionWeisser, W.W., Jansen, C.A.A., Hassell, M.P., The effects of a pool of dispersers on host-parasitoid systems (1997) J. Theor. Biol., 189, pp. 413-425. , [CSA][CROSSREF]
dc.descriptionYang, H.M., Epidemiologia da Transmissão da Dengue (2003) Tema -Tend. Mat. Apl. Comput., 4 (3), pp. 387-396. , [INFOTRIEVE][CSA]
dc.descriptionGrant FAPESP (Polticas Pblicas e Temtico) and CNPq (Edital Universal 01/ 02)Fellowship FAPESPFellowship CNPq
dc.languageen
dc.publisher
dc.relationMathematical Population Studies
dc.rightsfechado
dc.sourceScopus
dc.titleControlling Dispersal Dynamics Of Aedes Aegypti
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución