dc.creatorSaude A.V.
dc.creatorCouprie M.
dc.creatorLotufo R.
dc.date2006
dc.date2015-06-30T18:12:44Z
dc.date2015-11-26T14:27:33Z
dc.date2015-06-30T18:12:44Z
dc.date2015-11-26T14:27:33Z
dc.date.accessioned2018-03-28T21:30:43Z
dc.date.available2018-03-28T21:30:43Z
dc.identifier3540476512; 9783540476511
dc.identifierLecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics). , v. 4245 LNCS, n. , p. 605 - 616, 2006.
dc.identifier3029743
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33845215261&partnerID=40&md5=d920d3ed05b2a016914f92b6db5f2b10
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103516
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103516
dc.identifier2-s2.0-33845215261
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246371
dc.descriptionThe notion of skeleton plays a major role in shape analysis. Some usually desirable characteristics of a skeleton are: sufficient for the reconstruction of the original object, centered, thin and homotopic. The Euclidean Medial Axis presents all these characteristics in a continuous framework. In the discrete case, the Exact Euclidean Medial Axis (MA) is also sufficient for reconstruction and centered. It no longer preserves homotopy but it can be combined with a homotopic thinning to generate homotopic skeletons. The thinness of the MA, however, may be discussed. In this paper we present the definition of the Exact Euclidean Medial Axis on Higher Resolution which has the same properties as the MA but with a better thinness characteristic, against the price of rising resolution. We provide an efficient algorithm to compute it. © Springer-Verlag Berlin Heidelberg 2006.
dc.description4245 LNCS
dc.description
dc.description605
dc.description616
dc.descriptionBlum, H., An associative machine for dealing with the visual field and some of its biological implications (1961) Biological Prototypes and Synthetic Systems, 1, pp. 244-260
dc.descriptionDavies, E., Plummer, A., Thinning algorithms: A critique and a new methodology (1981) Pattern Recognition, 14, pp. 53-63
dc.descriptionTalbot, H., Vincent, L., Euclidean skeletons and conditional bisectors (1992) Procs. VCIP'92, 1818, pp. 862-876. , SPIE
dc.descriptionCouprie, M., Coeurjolly, D., Zrour, R., Discrete bisector function and euclidean skeleton in 2d and 3d (2006) Image and Vision Computing, , accepted
dc.descriptionBertrand, G., Skeletons in derived grids (1984) Procs. Int. Conf. Patt. Recogn., pp. 326-329
dc.descriptionKovalevsky, V., Finite topology as applied to image analysis (1989) Computer Vision, Graphics and Image Processing, 48, pp. 141-161
dc.descriptionKhalimsky, E., Kopperman, R., Meyer, P., Computer graphics and connected topologies on finite ordered sets (1990) Topology and Its Applications, 38, pp. 1-17
dc.descriptionKong, T.Y., Kopperman, R., Meyer, P., A topological approach to digital topology (1991) American Mathematical Monthly, 38, pp. 901-917
dc.descriptionBertrand, G., New notions for discrete topology (1999) Procs. DGCI, 1568, pp. 216-226. , LNCS, Springer Verlag
dc.descriptionBertrand, G., Couprie, M., New 3d parallel thinning algorithms based on critical kernels (2006) LNCS, , Kuba, A., Palágyi, K., Nyúl, L., eds.: DGCI, Springer
dc.descriptionDanielsson, P., Euclidean distance mapping (1980) Computer Graphics and Image Processing, 14, pp. 227-248
dc.descriptionMeyer, F., (1979) Cytologie Quantitative et Morphologie Mathématique, , PhD thesis, École des Mines de Paris, France
dc.descriptionSaito, T., Toriwaki, J., New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications (1994) Pattern Recognition, 27, pp. 1551-1565
dc.descriptionHirata, T., A unified linear-time algorithm for computing distance maps (1996) Information Processing Letters, 58 (3), pp. 129-133
dc.descriptionMeijster, A., Roerdink, J., Hesselink, W., A general algorithm for computing distance transforms in linear time (2000) Computational Imaging and Vision, 18, pp. 331-340. , J. Goutsias, L.V., Bloomberg, D., eds.: Mathematical morphology and its applications to image and signal processing 5th. Kluwer Academic Publishers
dc.descriptionRémy, E., Thiel, E., Look-up tables for medial axis on squared Euclidean distance transform (2003) Procs. DGCI, 2886, pp. 224-235. , LNCS, Springer Verlag
dc.descriptionCœurjolly, D., D-dimensional reverse Euclidean distance transformation and Euclidean medial axis extraction in optimal time (2003) Procs. DGCI, 2886, pp. 327-337. , LNCS, Springer Verlag
dc.descriptionRémy, E., Thiel, E., Exact medial axis with euclidean distance (2005) Image and Vision Computing, 23 (2), pp. 167-175
dc.descriptionSaúde, A.V., Couprie, M., Lotufo, R., (2006) Exact Euclidean Medial Axis in Higher Resolution, , Technical Report IGM2006-5, IGM, Université de Marne-la-vallée
dc.descriptionBorgefors, G., Ragnemalm, I., Di Baja, G.S., The Euclidean distance transform: Finding the local maxima and reconstructing the shape (1991) Seventh Scandinavian Conference on Image Analysis, 2, pp. 974-981. , Aalborg, Denmark
dc.descriptionHardy, G., Wright, E., (1978) An Introduction to the Theory of Numbers. 5th Edn., , Oxford University Press
dc.descriptionCouprie, M., Saúde, A.V., Bertrand, G., Euclidean homotopic skeleton based on critical kernels (2006) Procs. SIBGRAPI, , to appear
dc.languageen
dc.publisher
dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rightsfechado
dc.sourceScopus
dc.titleExact Euclidean Medial Axis In Higher Resolution
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución