dc.creatorWhitlock P.A.
dc.creatorVitiello S.A.
dc.date2006
dc.date2015-06-30T18:12:50Z
dc.date2015-11-26T14:27:28Z
dc.date2015-06-30T18:12:50Z
dc.date2015-11-26T14:27:28Z
dc.date.accessioned2018-03-28T21:30:36Z
dc.date.available2018-03-28T21:30:36Z
dc.identifier3540319948; 9783540319948
dc.identifierLecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics). , v. 3743 LNCS, n. , p. 40 - 52, 2006.
dc.identifier3029743
dc.identifier10.1007/11666806_4
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33745322884&partnerID=40&md5=ad42a30639b4c9af712ceac82bde7b8d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103520
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103520
dc.identifier2-s2.0-33745322884
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246349
dc.descriptionRecent experimental investigations [20] of solid 4He have been interpreted as showing possible superfluidity in the solid at low temperatures, below 0.2 K. A solid behaving this way, exhibiting both long range translational order and superfluidity, has been called a supersolid phase. The existence of a supersolid phase was proposed many years ago [1], and has been discussed theoretically. In this paper we review simulations of the solid state of bulk 4He at or near absolute zero temperature by quantum Monte Carlo techniques. The techniques considered are variational calculations at zero temperature which use traditional Bijl-Dingle-Jastrow wavefunctions or more recently, shadow wavefunctions; Green's function Monte Carlo calculations at zero temperature; diffusion Monte Carlo, and finally, the finite temperature path integral Monte Carlo method. A brief introduction to the technique will be given followed by a discussion of the simulation results with respect to solid helium. © Springer-Verlag Berlin Heidelberg 2006.
dc.description3743 LNCS
dc.description
dc.description40
dc.description52
dc.descriptionAndreev, A.F., Lifshitz, L.M., (1969) Soviet Phys. JETP, 29, p. 1107
dc.descriptionAziz, R.A., Nain, V.P.S., Carley, J.S., Taylor, W.L., McConville, G.T., An accurate intermolecular potential for helium (1979) J. Chem. Phys., 70, pp. 4330-4342
dc.description(1976) The Physics of Liquid and Solid Helium, , K.H. Bennemann and J.B. Ketterson, eds.: Wiley, New York
dc.descriptionDe Boer, J., Michels, A., Contribution to the quantum mechanical theory of the equation of state and the law of corresponding states. Determination of the law of force of Helium (1938) Physica (Utrecht), 5, pp. 945-957
dc.descriptionCeperley, D.M., Bernu, B., Ring exchanges and the supersolid phase of4He (2004) Phys. Rev. Lett., 93, pp. 155303-1-155303-4
dc.descriptionCeperley, D.M., Chester, G.V., Kalos, M.H., Monte Carlo study of the ground state of bosons interacting with Yukawa potentials (1978) Phys. Rev. B, 17, pp. 1070-1081
dc.descriptionCeperley, D.M., Chester, G.V., Kalos, M.H., Whitlock, P.A., Monte Carlo studies of crystalline helium (1978) Journal de Physique, 39, pp. 1298-1304. , Colloque C6
dc.descriptionCeperley, D.M., Pollock, E.L., Path-integral computation of the low-temperature properties of liquid4He (1986) Phys. Rev. Lett., 56, pp. 351-354
dc.descriptionCeperley, D.M., Pollock, E.L., The momentum distribution of normal and superfluid liquid4He (1987) Can. J. Phys., 65, p. 1416
dc.descriptionChester, G.V., Speculations on bose-einstein condensation and quantum crystals (1970) Phys. Rev. A, 2, pp. 256-258
dc.descriptionFeenberg, E., Ground state of an interacting boson system (1974) Ann. Phys. (N. Y.), 84, p. 128
dc.descriptionFeynman, R.P., The lambda-transistion in liquid helium (1953) Phys. Rev., 90, pp. 1116-1117
dc.descriptionGalli, D.E., Reatto, L., The shadow path integral ground state method: Study of confined solid4He (2004) J. Low Temp. Phys., 136, pp. 343-359
dc.descriptionHansen, J.P., Levesque, D., Ground state of solid helium-4 and -3 (1968) Phys. Rev., 165, pp. 293-299
dc.descriptionHansen, J.P., Pollock, E.L., Ground-state properties of solid helium-4 and -3 (1972) Phys. Rev. A, 5, pp. 2651-2665
dc.descriptionKac, M., Probability and related topics in physical science (1959) Interscience, , New York
dc.descriptionKalos, M.H., Lee, M.A., Whitlock, P.A., Chester, G.V., Modern potentials and the properties of condensed4He (1981) Phys. Rev. B, 24, pp. 115-130
dc.descriptionKalos, M.H., Levesque, D., Verlet, L., Helium at zero temperature with hard-sphere and other forces (1974) Phys. Rev. A, 9, pp. 2178-2195
dc.descriptionKalos, M.H., Whitlock, P.A., (1986) Monte Carlo Methods Volume I: Basics, 1. , John Wiley, New York
dc.descriptionKim, E., Chan, M.H.W., Observations of superflow in solid helium (2004) Science, 305, pp. 1941-1944
dc.descriptionKim, E., Chan, M.H.W., Probable observation of a supersolid helium phase (2004) Nature, 427, pp. 225-227
dc.descriptionMcMillan, W.L., Ground state of liquid4He (1965) Phys. Rev., 138, pp. A442-A451
dc.descriptionMetropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., Equation of state calculations by fast computing machines (1953) J. Chem. Phys., 21, pp. 1087-1092
dc.descriptionPederiva, F., Chester, G.V., Fantoni, S., Reatto, L., Variational study of vacancies in solid4He with shadow wave functions (1997) Phys. Rev. B, 56, pp. 5909-5917
dc.descriptionPederiva, F., Ferrante, A., Fantoni, S., Reatto, L., Homogeneous nucleation of crystalline order in superdense liquid 4He (1995) Phys. Rev. B, 52, pp. 7564-7571
dc.descriptionPollock, E.L., Ceperley, D.M., Simulation of quantum many-body systems by path-integral methods (1984) Phys. Rev. B, 30, pp. 2555-11568
dc.descriptionSarsa, A., Schmidt, K.E., Magro, W.R., A path integral ground state method (2000) J. Chem. Phys., 113, pp. 1366-1371
dc.descriptionSchmidt, K.E., Kalos, M.H., Lee, M.A., Chester, G.V., Variational Monte Carlo calculations of liquid4He with triplet correlations (1980) Phys. Rev. Lett., 45, pp. 573-576
dc.descriptionVitiello, S.A., Relative stability of hep and fee crystalline structures of4He (2002) Phys. Rev. B, 65, pp. 214516-214520
dc.descriptionVitiello, S.A., Runge, K., Kalos, M.H., Variational calculations for solid and liquid4He with a "shadow" wavefunction (1988) Phys. Rev. Lett., 60, pp. 1970-1972
dc.descriptionVitiello, S.A., Schmidt, K.E., Optimization of4He wave functions for the liquid and solid phases (1992) Phys. Rev. B, 46, pp. 5442-5447
dc.descriptionVitiello, S.A., Schmidt, K.E., Variational methods for4He using a modern he-he potential (1999) Phys. Rev. B, 60, pp. 12342-12348
dc.descriptionVitiello, S.A., Whitlock, P.A., Green's function Monte Carlo algorithm for the solution of the Schrödinger equation with the shadow wave function (1991) Phys. Rev. B, 44, pp. 7373-7377
dc.descriptionWhitlock, P.A., Ceperley, D.M., Chester, G.V., Kalos, M.H., Properties of liquid and solid4He (1979) Phys. Rev. B, 19, pp. 5598-5633
dc.descriptionWhitlock, P.A., Panoff, R.M., One-body density matrix and the momentum density in4He and3He (1984) Proc. of the 1984 Workshop on High-energy Excitations in Condensed Matter, 2. , ed. R.N. Silver. LA-10227-C
dc.descriptionWhitlock, P.A., Panoff, R.M., Accurate momentum distributions from computations on3He and4He (1987) Can. J. Phys., 65, pp. 1409-1415
dc.languageen
dc.publisher
dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rightsfechado
dc.sourceScopus
dc.titleQuantum Monte Carlo Simulations Of Solid4he
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución