dc.creatorPinho P.
dc.creatorGomes S.M.
dc.creatorFerreira P.J.
dc.creatorPereira J.R.
dc.creatorDomingues M.O.
dc.creatorGomide A.
dc.date2006
dc.date2015-06-30T18:13:17Z
dc.date2015-11-26T14:27:26Z
dc.date2015-06-30T18:13:17Z
dc.date2015-11-26T14:27:26Z
dc.date.accessioned2018-03-28T21:30:34Z
dc.date.available2018-03-28T21:30:34Z
dc.identifier9290929375; 9789290929376
dc.identifierEuropean Space Agency, (special Publication) Esa Sp. , v. 626 SP, n. , p. - , 2006.
dc.identifier3796566
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33847365906&partnerID=40&md5=e85031d54121e6d8f937f9ac6717e785
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103553
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103553
dc.identifier2-s2.0-33847365906
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246340
dc.descriptionIn this paper a scheme to obtain an adaptive method in space for the resolution of Maxwell's equations is presented. Using interpolating wavelets it is possible to obtain an adaptive grid allowing an economy of the computational resources. Using the non staggered grid model the stability factor is improved when compared with the classic FDTD and its value is greater that one. This factor is more limited with the increase of the interpolating polynomial. On the other hand the dispersion proprieties are more restricted, when compared with a staggered grid model.
dc.description626 SP
dc.description
dc.description
dc.description
dc.descriptionTaflove, A., (1996) Computational Electrodynamcs: The Finite Difference Time-Domain Method, , Norwood, MA
dc.descriptionKrumpholtz, M., Katehi, L.B., MRTD: New time-domain schemes based on multiresolution analysis (1996) IEEE Transactions on Microwave Theory and Techniques, 44
dc.descriptionHolmstrom, M., Wavelet based methods for time dependent PDEs (1997), Ph.D. dissertation, Uppsala UniversityPinho, P., Resolução das equações de Maxwell por análise multiresolução usando wavelets interpolatórias (2004), Ph.D. Thesis Universidade de AveiroDelauriers, G., Dubuc, S., Symmetric iterative interpolation processes (1986) Contructive Approximation, 5
dc.descriptionP. Pinho, P. J. Ferreira, S. M. Gomes, and J. R. Pereira, Solving Maxwell's equations using interpolating wavelets, 5th Conference on Telecomunications, C. S. et al., Ed., 2005
dc.languageen
dc.publisher
dc.relationEuropean Space Agency, (Special Publication) ESA SP
dc.rightsfechado
dc.sourceScopus
dc.titleResolution Of Maxwell's Equations In A Non Staggered Grid Model
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución