dc.creatorPauli J.R.
dc.creatorGomes R.J.
dc.creatorLuciano E.
dc.date2006
dc.date2015-06-30T18:12:02Z
dc.date2015-11-26T14:27:21Z
dc.date2015-06-30T18:12:02Z
dc.date2015-11-26T14:27:21Z
dc.date.accessioned2018-03-28T21:30:27Z
dc.date.available2018-03-28T21:30:27Z
dc.identifier
dc.identifierRevista De Neurologia. , v. 42, n. 6, p. 325 - 331, 2006.
dc.identifier2100010
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33749170808&partnerID=40&md5=c6f250b1aa89ce04e2c29b7e9da4cbe5
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103460
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103460
dc.identifier2-s2.0-33749170808
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246310
dc.descriptionAim. To investigate the effects of physical training associated to dexamethasone administration in carbohydrate metabolism and adrenocorticotrophic hormone (ACTH) release. Materials and methods. Young Wistar rats were divided into four groups: sedentary control (CS), sedentary dexamethasone (DxS), trained control (CT) and trained dexamethasone (DxT). The rats were submitted to swimming training associate to administration of dexamethasone for ten weekends. Before sacrifice the rats received subcutaneous insulin to calculate the maximum decreased in blood glucose. Venous blood was sampled obtained at the end experiment period to determine glucose, insulin, free fatty acids (FFA) and ACTH. Gastrocnemius and liver tissue samples were used to determination glycogen, and adipose epididimal tissue was used to measured the weight. Results. Dexamethasone administration provoke insulin resistance and the physical training reverted this aspect. Training promoted increase in muscle and liver glycogen store and a high utilization of FFA. Moreover, the dexamethasone provoke decreased of ACTH release in response to acute exercise, showing marked differences in the functioning of the hypothalamy-pituitary-adrenal (HPA) axis between groups of rats. Conclusions. a) Low-dose of dexamethasone promote several side effects in metabolism intermediary and chronic exposure to steroid was associated with insulin resistance; b) The regular swimming exercise promoted increased insulin sensitivity. Therefore, exercise can override the dexametasone negative feedback of the HPA axis activation in rats. © 2006, Revista de Neurología.
dc.description42
dc.description6
dc.description325
dc.description331
dc.descriptionDallman, M.F., Stress update: Adaptation of hipothalamic-pituitary-adrenal axis to chronic stress (1993) Trends Endocrinol Metab, 4, pp. 62-69
dc.descriptionSingh, A., Zelazowska, E.B., Petrides, J.S., Raybourne, R.B., Sternberg, E.M., Gold, P.W., Lymphocyte subset responses to exercise and glucocorticoid suppression in healthy men (1996) Med Sci Sports Exerc, 28, pp. 822-828
dc.descriptionLipworth, B.J., Systemic adverse effects of inhaled corticosteroid therapy: A systematic review and meta-analysis (1999) Arch Intern Med, 159, pp. 941-955
dc.descriptionLima, J.G., Nobrega, L.H.C., Nobrega, M.L.C., Rodrigues Jr, A.B., Pereira, A.F.F., Supressão hipotálomo-hipófise-adrenal e risco de insuficiência adrenal secundária devido ao uso de dexametasona nasal (2002) Arq Bras Endocrinol Metabol, 46, pp. 193-196
dc.descriptionVisser, M.J., Van der Veer, E., Postma, D.S., Arends, L.R., De Vries, T.W., Brand, P.L., Side-effects of fluticasone in asthmatic children: No effects after dose reduction (2004) Eur Respir J, 24, pp. 420-425
dc.descriptionStewart, P.M., The adrenal cortex (2002) Williams textbook of endocrinology, pp. 491-551. , Wilson JD, Foster DW, eds, Philadelphia: WB Saunders;
dc.descriptionSeverino, C., Brizzi, P., Solinas, A., Secchi, G., Maioli, M., Tonolo, G., Low-dose dexamethasone in the rat: A model to study insulin resistance (2002) Am J Physiol Endocrinol Metab, 283, pp. E367-E373
dc.descriptionYamauchi, T., Harada, T., Kurono, M., Matsuni, N., Effect of exercise-induced acidosis on aldosterone secretion in men (1998) Eur J Appl Physiol Occup Physiol, 77, pp. 409-412
dc.descriptionTomas, F.M., Effect of corticosterone on myofibrillar protein turnover in diabetic rats as assessed by Ntau-methylhistidine excretion (1982) Biochem J, 208, pp. 593-601
dc.descriptionMathews, J.N., Altman, D.G., Campbell, M.J., Royston, P., Analysis of serial measurements in medical research (1990) BMJ, 27, pp. 230-235
dc.descriptionNogueira, D.M., Strufaldi, B., Hirata, M.H., Abdalla, D.S.P., Hirata, R.D.C., Métodos de availação da glicose e ácidos graxos livres (1990) Métodos de bioquímica clínica, pp. 117-123. , Nogueira DM, Strufaldi B, Hirata MH, Abdalla DSP, Hirata RDC, eds, São Paulo: Pancasat;
dc.descriptionHerbert, V., Lau, K.S., Gottlieb, C.W., Bleicher, S.J., Coated charcoal immunoassay of insulin (1967) J Clin Endocrinol Metab, 25, pp. 1375-1384
dc.descriptionDubois, B., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Colorimetric method for determination of sugar and related substances (1956) Anal Chem, 28, pp. 350-356
dc.descriptionFrancischi, R.P., Pereira, L.O., Lancha Júnior, A.H., Exercício, comportamento alimentar e obesidade: Revisão dos efeitos sobre a composição corporal e parâmetros metabólicos (2001) Rev Paul Educ Fis, 15, pp. 117-140
dc.descriptionBaker, C.W., Brownell, K.D., Atividade física e manutenção da perda de peso: Mecanismos fisiológicos e psicológicos (2002) Atividade física e obesidade, pp. 359-381. , Bouchard C, ed, São Paulo: Manole;
dc.descriptionCiolac, E.M., Guimarães, G.V., Exercício físico e síndrome metabólica (2004) Rev Bras Med Esporte, 10, pp. 319-324
dc.descriptionMensink, M., Blaak, E.E., Vidal, H., De Bruin, T.W., Glatz, J.F., Saris, W.H., Lifestyle changes and lipid metabolism gene expression and protein content in skeletal muscle of subjects with impaired glucose tolerance (2003) Diabetologia, 46, pp. 1082-1089
dc.descriptionLuciano, E., Carneiro, E.M., Carvalho, C.R., Carvalheira, J.B., Peres, S.B., Reis, M.A., Endurance training improves responsiveness to insulin and modulates insulin signal transduction through the phosphatidylinositol 3-kinase/Akt-1 pathway (2002) Eur J Endocrinol, 147, pp. 149-157
dc.descriptionChrist-Roberts, C.Y., Pratipanawatr, T., Pratipanawatr, W., Berria, R., Belfort, R., Mandarino, L.J., Increased insulin receptor signaling and glycogen synthase activity contribute to the synergistic effect of exercise on insulin action (2003) J Appl Physiol, 95, pp. 2519-2529
dc.descriptionHoumard, J.A., Tanner, C.J., Slentz, C.A., Duscha, B.D., Mccartney, J.S., Kraus, W.E., Effect of the volume and intensity of exercise training on insulin sensitivity (2004) J Appl Physiol, 96, pp. 101-106
dc.descriptionFlora Filho R, Zilberstein B. Óxido nítrico: o simples mensageiro percorrendo a complexidade. Metabolismo, síntese e funções. Rev Assoc Med Brasil 2000
dc.description46: 265-271Viaro, F., Nobre, F., Evora, P.R., Expressão das óxido nítrico sintetases na fisiopatologia das doenças cardiovasculares (2000) Arq Bras Cardiol, 74, pp. 365-379
dc.descriptionShen, W., Zhang, X., Wolin, M.S., Sessa, W., Hintze, T.H., Nitric oxide production and NO synthase gene expression contribute to vascular regulation during exercise (1995) Med Sci Sports Exerc, 8, pp. 1125-1134
dc.descriptionKingwell, B.A., Nitric oxide-mediated metabolic regulation during exercise: Effects of training in health and cardiovascular disease (2000) FASEB J, 14, pp. 1685-1696
dc.descriptionTanabe, T., Maeda, S., Miyauchi, T., Iemitsu, M., Takanashi, M., Irukayama-Tomobe, Y., Exercise training improves ageing-induced decreased in eNOS expression of the aorta (2003) Acta Physiol Scand, 178, pp. 3-10
dc.descriptionStojanovska, L., Rosella, G., Proietto, J., Evolution of dexamethasone-induced insulin resistance in rats (1990) Am J Physiol, 258, pp. E748-E756
dc.descriptionCoderre, L., Srivastava, A.K., Chiasson, J.L., Effect of hypercorticism on regulation of skeletal muscle glycogen metabolism by insulin (1992) Am J Physiol, 262, pp. E427-E433
dc.descriptionTounian, P., Schneiter, P., Henry, S., Delarue, J., Tappy, L., Effects of dexamethasone on hepatic glucose production and fructose metabolism in healthy humans (1997) Am J Physiol, 273, pp. E315-E320
dc.descriptionKalhan, S.C., Adam, P.A., Inhibitory effect of prednisone on insulin secretion in man: Model for duplication of blood glucose concentration (1975) J Clin Endocrinol Metab, 41, pp. 600-610
dc.descriptionDinneen, S., Alzaid, A., Miles, J., Rizza, R., Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans (1993) J Clin Invest, 92, pp. 2283-2290
dc.descriptionLongano, C.A., Fletcher, H.P., Insulin release after acute hydrocortisone treatment in mice (1983) Metabolism, 32, pp. 603-608
dc.descriptionFisher, B., Rausch, U., Wollny, P., Westphal, H., Seitz, J., Aumüller, G., Immunohistochemical localization of the glucocorticoid receptor in pancreatic b-cell of the rat (1990) Endocrinology, 126, pp. 2635-2641
dc.descriptionPlat, L., Byrne, M.M., Sturis, J., Polonsky, K.S., Mockel, J., Féry, F., Effects of morning cortisol elevation on insulin secretion and glucose regulation in humans (1996) Am J Physiol, 270, pp. E36-E42
dc.descriptionHochberg, Z., Pacak, K., Chrousos, G.P., Endocrine withdrawal syndromes (2003) Endocr Rev, 24, pp. 523-538
dc.descriptionHenquin, J.C., Gilon, P., Lambillotte, C., Direct glucocorticoid inhibition of insulin secretion (1997) J Clin Invest, 3, pp. 414-423
dc.descriptionJones, C.G., Hothi, S.K., Titheradge, M.A., Effect of dexamethasone on gluconeogenesis pyruvate kinase, pyruvate carboxylase and pyruvate dehydrogenase flux in isolated hepatocytes (1993) Biochem J, 289, pp. 821-828
dc.descriptionPoland, J.L., Poland, J.W., Honey, R.N., Differential response of rat cardiac and skeletal muscle glycogen to glucocorticoids (1982) Can J Physiol Pharmacol, 60, pp. 634-637
dc.descriptionCarvalho, C.R., Saad, M.J., Resistência à insulina induzida por glicocorticóides: Investigação de mecanismos moleculares (1998) Arq Bras Endocrinol Metabol, 42, pp. 13-21
dc.descriptionAllan, E.H., Titheradge, M.A., Effect of treatment of rats with dexamethasone in vivo on gluconeogenesis and metabolite compartmentation in subsequently isolated hepatocytes (1984) Biochem J, 219, pp. 117-123
dc.descriptionArgaud, D., Zhang, Q., Pan, W., Maitra, S., Pilkis, S.J., Lange, A.J., Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: Gene structure and 5′-flanking sequence (1996) Diabetes, 45, pp. 1563-1571
dc.descriptionFriedman, J.E., Yun, J.S., Patel, Y.M., Mcgrane, M.M., Hanson, R.W., Glucocorticoid regulate the induction of phosphoenolpyruvate carboxykinase (GTP) gene trascription during diabetes (1993) J Biol Chem, 268, pp. 12952-12957
dc.descriptionTabata, I., Atomi, Y., Mutoh, Y., Miyashita, M., Effect of physical training on the responses of serum adrenocorticotropic hormone during prolonged exhausting exercise (1990) Eur J Appl Physiol Occup Physiol, 61, pp. 188-192
dc.descriptionHeitkamp, H.C., Schultz, H., Röcker, K., Dickhuth, H.H., Endurance training in females: Changes in ?-endorphin and ACTH (1998) Int J Sports Med, 19, pp. 260-264
dc.descriptionViru, M., Litvinova, L., Smirnova, T., Viru, A., Glucocorticoids in metabolic control during exercise: Glycogen metabolism (1994) J Sports Med Phys Fitness, 34, pp. 377-382
dc.descriptionDeuster, P.A., Petrides, J.S., Singh, A., Lucci, E.B., Chrousos, G.P., Gold, P.W., High intensity exercise promotes escape of adrenocorticotropin and cortisol from suppression by dexamethasone: Sexually dimorphic responses (1998) J Clin Endocrinol Metab, 83, pp. 3332-3338
dc.descriptionLac, G., Marquet, P., Chassain, A.P., Galen, F.X., Dexamethasone in resting and exercising men. II. Effects on adrenocortical hormones (1999) J Appl Physiol, 87, pp. 183-188
dc.descriptionPetrides, J.S., Mueller, G.P., Kalogeras, K.T., Chrousos, G.P., Gold, P.W., Deuster, P.A., Exercise-induced activation of the hypothalamic-pituitary-adrenal axis: Marked differences in the sensitivity to glucocorticoid suppression (1994) J Clin Endocrinol Metab, 79, pp. 377-383
dc.descriptionPetrides, J.S., Gold, P.W., Mueller, G.P., Singh, A., Stratakis, C., Chrousos, G.P., Marked differences in functioning of the hypothalamic-pituitary-adrenal axis between groups of men (1997) J Appl Physiol, 82, pp. 1979-1988
dc.descriptionInder, W.J., Hellemans, J., Swanney, M., Prickett, T.C., Donald, R.A., Prolonged exercise increases peripheral plasma ACTH, CRH, and AVP in male athletes (1998) J Appl Physiol, 85, pp. 835-841
dc.descriptionMartignoni, E., Appenzeller, O., Nappi, R.E., Sances, G., Costa, A., Nappi, G., The effects of physical exercise at high altitude on adrenocortical function in humans (1997) Funct Neurol, 12, pp. 339-344
dc.languagees
dc.publisher
dc.relationRevista de Neurologia
dc.rightsfechado
dc.sourceScopus
dc.titleHipothalamy-pituitary Axis: Effects Of Physical Training In Rats Administered With Dexamethasone [eje Hipotálamo-pituitario: Efectos Del Entrenamiento Físico En Ratas Wistar Con Administración De Dexametasona]
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución