dc.creator | Pauli J.R. | |
dc.creator | Gomes R.J. | |
dc.creator | Luciano E. | |
dc.date | 2006 | |
dc.date | 2015-06-30T18:12:02Z | |
dc.date | 2015-11-26T14:27:21Z | |
dc.date | 2015-06-30T18:12:02Z | |
dc.date | 2015-11-26T14:27:21Z | |
dc.date.accessioned | 2018-03-28T21:30:27Z | |
dc.date.available | 2018-03-28T21:30:27Z | |
dc.identifier | | |
dc.identifier | Revista De Neurologia. , v. 42, n. 6, p. 325 - 331, 2006. | |
dc.identifier | 2100010 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-33749170808&partnerID=40&md5=c6f250b1aa89ce04e2c29b7e9da4cbe5 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/103460 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/103460 | |
dc.identifier | 2-s2.0-33749170808 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1246310 | |
dc.description | Aim. To investigate the effects of physical training associated to dexamethasone administration in carbohydrate metabolism and adrenocorticotrophic hormone (ACTH) release. Materials and methods. Young Wistar rats were divided into four groups: sedentary control (CS), sedentary dexamethasone (DxS), trained control (CT) and trained dexamethasone (DxT). The rats were submitted to swimming training associate to administration of dexamethasone for ten weekends. Before sacrifice the rats received subcutaneous insulin to calculate the maximum decreased in blood glucose. Venous blood was sampled obtained at the end experiment period to determine glucose, insulin, free fatty acids (FFA) and ACTH. Gastrocnemius and liver tissue samples were used to determination glycogen, and adipose epididimal tissue was used to measured the weight. Results. Dexamethasone administration provoke insulin resistance and the physical training reverted this aspect. Training promoted increase in muscle and liver glycogen store and a high utilization of FFA. Moreover, the dexamethasone provoke decreased of ACTH release in response to acute exercise, showing marked differences in the functioning of the hypothalamy-pituitary-adrenal (HPA) axis between groups of rats. Conclusions. a) Low-dose of dexamethasone promote several side effects in metabolism intermediary and chronic exposure to steroid was associated with insulin resistance; b) The regular swimming exercise promoted increased insulin sensitivity. Therefore, exercise can override the dexametasone negative feedback of the HPA axis activation in rats. © 2006, Revista de Neurología. | |
dc.description | 42 | |
dc.description | 6 | |
dc.description | 325 | |
dc.description | 331 | |
dc.description | Dallman, M.F., Stress update: Adaptation of hipothalamic-pituitary-adrenal axis to chronic stress (1993) Trends Endocrinol Metab, 4, pp. 62-69 | |
dc.description | Singh, A., Zelazowska, E.B., Petrides, J.S., Raybourne, R.B., Sternberg, E.M., Gold, P.W., Lymphocyte subset responses to exercise and glucocorticoid suppression in healthy men (1996) Med Sci Sports Exerc, 28, pp. 822-828 | |
dc.description | Lipworth, B.J., Systemic adverse effects of inhaled corticosteroid therapy: A systematic review and meta-analysis (1999) Arch Intern Med, 159, pp. 941-955 | |
dc.description | Lima, J.G., Nobrega, L.H.C., Nobrega, M.L.C., Rodrigues Jr, A.B., Pereira, A.F.F., Supressão hipotálomo-hipófise-adrenal e risco de insuficiência adrenal secundária devido ao uso de dexametasona nasal (2002) Arq Bras Endocrinol Metabol, 46, pp. 193-196 | |
dc.description | Visser, M.J., Van der Veer, E., Postma, D.S., Arends, L.R., De Vries, T.W., Brand, P.L., Side-effects of fluticasone in asthmatic children: No effects after dose reduction (2004) Eur Respir J, 24, pp. 420-425 | |
dc.description | Stewart, P.M., The adrenal cortex (2002) Williams textbook of endocrinology, pp. 491-551. , Wilson JD, Foster DW, eds, Philadelphia: WB Saunders; | |
dc.description | Severino, C., Brizzi, P., Solinas, A., Secchi, G., Maioli, M., Tonolo, G., Low-dose dexamethasone in the rat: A model to study insulin resistance (2002) Am J Physiol Endocrinol Metab, 283, pp. E367-E373 | |
dc.description | Yamauchi, T., Harada, T., Kurono, M., Matsuni, N., Effect of exercise-induced acidosis on aldosterone secretion in men (1998) Eur J Appl Physiol Occup Physiol, 77, pp. 409-412 | |
dc.description | Tomas, F.M., Effect of corticosterone on myofibrillar protein turnover in diabetic rats as assessed by Ntau-methylhistidine excretion (1982) Biochem J, 208, pp. 593-601 | |
dc.description | Mathews, J.N., Altman, D.G., Campbell, M.J., Royston, P., Analysis of serial measurements in medical research (1990) BMJ, 27, pp. 230-235 | |
dc.description | Nogueira, D.M., Strufaldi, B., Hirata, M.H., Abdalla, D.S.P., Hirata, R.D.C., Métodos de availação da glicose e ácidos graxos livres (1990) Métodos de bioquímica clínica, pp. 117-123. , Nogueira DM, Strufaldi B, Hirata MH, Abdalla DSP, Hirata RDC, eds, São Paulo: Pancasat; | |
dc.description | Herbert, V., Lau, K.S., Gottlieb, C.W., Bleicher, S.J., Coated charcoal immunoassay of insulin (1967) J Clin Endocrinol Metab, 25, pp. 1375-1384 | |
dc.description | Dubois, B., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Colorimetric method for determination of sugar and related substances (1956) Anal Chem, 28, pp. 350-356 | |
dc.description | Francischi, R.P., Pereira, L.O., Lancha Júnior, A.H., Exercício, comportamento alimentar e obesidade: Revisão dos efeitos sobre a composição corporal e parâmetros metabólicos (2001) Rev Paul Educ Fis, 15, pp. 117-140 | |
dc.description | Baker, C.W., Brownell, K.D., Atividade física e manutenção da perda de peso: Mecanismos fisiológicos e psicológicos (2002) Atividade física e obesidade, pp. 359-381. , Bouchard C, ed, São Paulo: Manole; | |
dc.description | Ciolac, E.M., Guimarães, G.V., Exercício físico e síndrome metabólica (2004) Rev Bras Med Esporte, 10, pp. 319-324 | |
dc.description | Mensink, M., Blaak, E.E., Vidal, H., De Bruin, T.W., Glatz, J.F., Saris, W.H., Lifestyle changes and lipid metabolism gene expression and protein content in skeletal muscle of subjects with impaired glucose tolerance (2003) Diabetologia, 46, pp. 1082-1089 | |
dc.description | Luciano, E., Carneiro, E.M., Carvalho, C.R., Carvalheira, J.B., Peres, S.B., Reis, M.A., Endurance training improves responsiveness to insulin and modulates insulin signal transduction through the phosphatidylinositol 3-kinase/Akt-1 pathway (2002) Eur J Endocrinol, 147, pp. 149-157 | |
dc.description | Christ-Roberts, C.Y., Pratipanawatr, T., Pratipanawatr, W., Berria, R., Belfort, R., Mandarino, L.J., Increased insulin receptor signaling and glycogen synthase activity contribute to the synergistic effect of exercise on insulin action (2003) J Appl Physiol, 95, pp. 2519-2529 | |
dc.description | Houmard, J.A., Tanner, C.J., Slentz, C.A., Duscha, B.D., Mccartney, J.S., Kraus, W.E., Effect of the volume and intensity of exercise training on insulin sensitivity (2004) J Appl Physiol, 96, pp. 101-106 | |
dc.description | Flora Filho R, Zilberstein B. Óxido nítrico: o simples mensageiro percorrendo a complexidade. Metabolismo, síntese e funções. Rev Assoc Med Brasil 2000 | |
dc.description | 46: 265-271Viaro, F., Nobre, F., Evora, P.R., Expressão das óxido nítrico sintetases na fisiopatologia das doenças cardiovasculares (2000) Arq Bras Cardiol, 74, pp. 365-379 | |
dc.description | Shen, W., Zhang, X., Wolin, M.S., Sessa, W., Hintze, T.H., Nitric oxide production and NO synthase gene expression contribute to vascular regulation during exercise (1995) Med Sci Sports Exerc, 8, pp. 1125-1134 | |
dc.description | Kingwell, B.A., Nitric oxide-mediated metabolic regulation during exercise: Effects of training in health and cardiovascular disease (2000) FASEB J, 14, pp. 1685-1696 | |
dc.description | Tanabe, T., Maeda, S., Miyauchi, T., Iemitsu, M., Takanashi, M., Irukayama-Tomobe, Y., Exercise training improves ageing-induced decreased in eNOS expression of the aorta (2003) Acta Physiol Scand, 178, pp. 3-10 | |
dc.description | Stojanovska, L., Rosella, G., Proietto, J., Evolution of dexamethasone-induced insulin resistance in rats (1990) Am J Physiol, 258, pp. E748-E756 | |
dc.description | Coderre, L., Srivastava, A.K., Chiasson, J.L., Effect of hypercorticism on regulation of skeletal muscle glycogen metabolism by insulin (1992) Am J Physiol, 262, pp. E427-E433 | |
dc.description | Tounian, P., Schneiter, P., Henry, S., Delarue, J., Tappy, L., Effects of dexamethasone on hepatic glucose production and fructose metabolism in healthy humans (1997) Am J Physiol, 273, pp. E315-E320 | |
dc.description | Kalhan, S.C., Adam, P.A., Inhibitory effect of prednisone on insulin secretion in man: Model for duplication of blood glucose concentration (1975) J Clin Endocrinol Metab, 41, pp. 600-610 | |
dc.description | Dinneen, S., Alzaid, A., Miles, J., Rizza, R., Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans (1993) J Clin Invest, 92, pp. 2283-2290 | |
dc.description | Longano, C.A., Fletcher, H.P., Insulin release after acute hydrocortisone treatment in mice (1983) Metabolism, 32, pp. 603-608 | |
dc.description | Fisher, B., Rausch, U., Wollny, P., Westphal, H., Seitz, J., Aumüller, G., Immunohistochemical localization of the glucocorticoid receptor in pancreatic b-cell of the rat (1990) Endocrinology, 126, pp. 2635-2641 | |
dc.description | Plat, L., Byrne, M.M., Sturis, J., Polonsky, K.S., Mockel, J., Féry, F., Effects of morning cortisol elevation on insulin secretion and glucose regulation in humans (1996) Am J Physiol, 270, pp. E36-E42 | |
dc.description | Hochberg, Z., Pacak, K., Chrousos, G.P., Endocrine withdrawal syndromes (2003) Endocr Rev, 24, pp. 523-538 | |
dc.description | Henquin, J.C., Gilon, P., Lambillotte, C., Direct glucocorticoid inhibition of insulin secretion (1997) J Clin Invest, 3, pp. 414-423 | |
dc.description | Jones, C.G., Hothi, S.K., Titheradge, M.A., Effect of dexamethasone on gluconeogenesis pyruvate kinase, pyruvate carboxylase and pyruvate dehydrogenase flux in isolated hepatocytes (1993) Biochem J, 289, pp. 821-828 | |
dc.description | Poland, J.L., Poland, J.W., Honey, R.N., Differential response of rat cardiac and skeletal muscle glycogen to glucocorticoids (1982) Can J Physiol Pharmacol, 60, pp. 634-637 | |
dc.description | Carvalho, C.R., Saad, M.J., Resistência à insulina induzida por glicocorticóides: Investigação de mecanismos moleculares (1998) Arq Bras Endocrinol Metabol, 42, pp. 13-21 | |
dc.description | Allan, E.H., Titheradge, M.A., Effect of treatment of rats with dexamethasone in vivo on gluconeogenesis and metabolite compartmentation in subsequently isolated hepatocytes (1984) Biochem J, 219, pp. 117-123 | |
dc.description | Argaud, D., Zhang, Q., Pan, W., Maitra, S., Pilkis, S.J., Lange, A.J., Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: Gene structure and 5′-flanking sequence (1996) Diabetes, 45, pp. 1563-1571 | |
dc.description | Friedman, J.E., Yun, J.S., Patel, Y.M., Mcgrane, M.M., Hanson, R.W., Glucocorticoid regulate the induction of phosphoenolpyruvate carboxykinase (GTP) gene trascription during diabetes (1993) J Biol Chem, 268, pp. 12952-12957 | |
dc.description | Tabata, I., Atomi, Y., Mutoh, Y., Miyashita, M., Effect of physical training on the responses of serum adrenocorticotropic hormone during prolonged exhausting exercise (1990) Eur J Appl Physiol Occup Physiol, 61, pp. 188-192 | |
dc.description | Heitkamp, H.C., Schultz, H., Röcker, K., Dickhuth, H.H., Endurance training in females: Changes in ?-endorphin and ACTH (1998) Int J Sports Med, 19, pp. 260-264 | |
dc.description | Viru, M., Litvinova, L., Smirnova, T., Viru, A., Glucocorticoids in metabolic control during exercise: Glycogen metabolism (1994) J Sports Med Phys Fitness, 34, pp. 377-382 | |
dc.description | Deuster, P.A., Petrides, J.S., Singh, A., Lucci, E.B., Chrousos, G.P., Gold, P.W., High intensity exercise promotes escape of adrenocorticotropin and cortisol from suppression by dexamethasone: Sexually dimorphic responses (1998) J Clin Endocrinol Metab, 83, pp. 3332-3338 | |
dc.description | Lac, G., Marquet, P., Chassain, A.P., Galen, F.X., Dexamethasone in resting and exercising men. II. Effects on adrenocortical hormones (1999) J Appl Physiol, 87, pp. 183-188 | |
dc.description | Petrides, J.S., Mueller, G.P., Kalogeras, K.T., Chrousos, G.P., Gold, P.W., Deuster, P.A., Exercise-induced activation of the hypothalamic-pituitary-adrenal axis: Marked differences in the sensitivity to glucocorticoid suppression (1994) J Clin Endocrinol Metab, 79, pp. 377-383 | |
dc.description | Petrides, J.S., Gold, P.W., Mueller, G.P., Singh, A., Stratakis, C., Chrousos, G.P., Marked differences in functioning of the hypothalamic-pituitary-adrenal axis between groups of men (1997) J Appl Physiol, 82, pp. 1979-1988 | |
dc.description | Inder, W.J., Hellemans, J., Swanney, M., Prickett, T.C., Donald, R.A., Prolonged exercise increases peripheral plasma ACTH, CRH, and AVP in male athletes (1998) J Appl Physiol, 85, pp. 835-841 | |
dc.description | Martignoni, E., Appenzeller, O., Nappi, R.E., Sances, G., Costa, A., Nappi, G., The effects of physical exercise at high altitude on adrenocortical function in humans (1997) Funct Neurol, 12, pp. 339-344 | |
dc.language | es | |
dc.publisher | | |
dc.relation | Revista de Neurologia | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Hipothalamy-pituitary Axis: Effects Of Physical Training In Rats Administered With Dexamethasone [eje Hipotálamo-pituitario: Efectos Del Entrenamiento Físico En Ratas Wistar Con Administración De Dexametasona] | |
dc.type | Artículos de revistas | |