dc.creatorMaunsell R.
dc.creatorOuaknine M.
dc.creatorGiovanni A.
dc.creatorCrespo A.
dc.date2006
dc.date2015-06-30T18:11:58Z
dc.date2015-11-26T14:27:13Z
dc.date2015-06-30T18:11:58Z
dc.date2015-11-26T14:27:13Z
dc.date.accessioned2018-03-28T21:30:18Z
dc.date.available2018-03-28T21:30:18Z
dc.identifier
dc.identifierOtolaryngology - Head And Neck Surgery. , v. 135, n. 3, p. 438 - 444, 2006.
dc.identifier1945998
dc.identifier10.1016/j.otohns.2006.05.023
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33747881484&partnerID=40&md5=37be6f770fd0ffa486375ce241276eb4
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103456
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103456
dc.identifier2-s2.0-33747881484
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246271
dc.descriptionObjective: The aim of this study was to describe and analyze the vibratory pattern of vocal folds in an asymmetric situation. Study design and setting: Cricothyroid muscle unilateral action was simulated on excised larynges on an experimental bench. Increasing airflow rates were applied to achieve vocal fold vibration. Electroglottography and an optoreflectometer device allowed analysis of separate and simultaneous vocal fold vibration. Spectra of the signals were obtained for each level of airflow variation. Results: All experiments showed periodic vibration. A phase shift was noted between the two vocal folds. Subharmonics and biphonation were identified in all the experiments. Conclusion: Lax vocal folds were more susceptible to spectral changes with increasing airflow. Significance: Knowledge of the consequences of mass, tension, and position asymmetries of the vocal folds is crucial for diagnosis making and defining therapeutic strategies in dysphonic patients. This study may contribute to the understanding of physiology of vocal fold interaction and its compensatory mechanisms. © 2006 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Inc.
dc.description135
dc.description3
dc.description438
dc.description444
dc.descriptionWoodson, G., Configuration of the glottis in laryngeal paralysis: clinical study (1993) Laryngoscope, 103, pp. 1227-1234
dc.descriptionWoodson, G.E., Murry, M.P., Schweizer, V., Unilateral cricothyroid contraction and glottic configuration (1998) J Voice, 12, pp. 335-339
dc.descriptionFaaborg-Andersen, K., Electromyographic investigation of intrinsic laryngeal muscles in humans (1957) Acta Physiol Scand, 41, pp. 140-167
dc.descriptionDedo, H.H., Hall, W.N., Electrodes in laryngeal electromyography. Reliability comparison (1969) Ann Otol Rhinol Laryngol, 78, pp. 172-180
dc.descriptionNasseri, S.S., Maragos, N.E., Combination thyroplasty and the "twisted larynx:" combined type IV and type I thyroplasty for superior laryngeal nerve weakness (2000) J Voice, 14, pp. 104-111
dc.descriptionKoufman, J.A., Belfsky, P.C., Unilateral or localized Reinke's edema (pseudocyst) as a manifestation of vocal fold paresis: the paresis podule (2001) Laryngoscope, 111, pp. 576-580
dc.descriptionEckley, C.A., Sataloff, R.T., Hawkshaw, M., Voice range in superior laryngeal nerve paresis and paralysis (1998) J Voice, 12, pp. 340-348
dc.descriptionAbleson, T.I., Tucker, H.M., Laryngeal findings in superior laryngeal nerve paralysis: a controversy (1981) Otolaryngol Head Neck Surg, 89, pp. 463-470
dc.descriptionTanaka, S., Hirano, M., Umeno, H., Laryngeal behavior in unilateral superior laryngeal nerve paralysis (1994) Ann Otol Rhinol Laryngol, 103, pp. 93-97
dc.descriptionHirano, M., Ohala, J., Vennard, W., The function of laryngeal muscles in regulating fundamental frequency and intensity of phonation (1969) J Speech Hear Res, 12, pp. 616-628
dc.descriptionAtkinson, J.E., Correlation analysis of the physiological factors controlling fundamental voice frequency (1978) J Acoust Soc Am, 63, pp. 211-222
dc.descriptionDursun, G., Sataloff, R.T., Spiegel, J.R., Superior laryngeal nerve paresis and paralysis (1996) J Voice, 10, pp. 206-211
dc.descriptionArnold, G.E., Physiology and pathology of the cricothyroid muscle (1961) Laryngoscope, 71, pp. 687-753
dc.descriptionMygind, H., Die paralyse des musculus cricothyroideus (1906) Arch Otolaryngol, 18, pp. 403-418
dc.descriptionGiovanni, A., Ouaknine, M., Guelfucci, B., Non linear behavior of vocal fold vibration in an experimental model: role of coupling between the vocal folds (1999) J Voice, 3, pp. 465-476
dc.descriptionOuaknine, M., Garrel, R., Giovanni, A., Separate detection of vocal fold vibration by optoreflectometry: a study of biphonation on excised porcine larynges (2003) Folia Phoniatr Logop, 55, pp. 28-38
dc.descriptionTitze, I., Baken, R., Herzel, H., Evidence of chaos in vocal fold vibration (1993) Frontiers in basic science, pp. 143-188. , Titze I. (Ed), Singular Publishing Group, San Diego
dc.descriptionRemacle, M., Trigoux, I., Characteristics of nodules through the high-resolution frequency analyzer (1991) Folia Phoniatr, 43, pp. 53-59
dc.descriptionBerry, D.A., Herzel, H., Titze, I.R., Bifurcations in excised larynx experiments (1996) J Voice, 10, pp. 129-138
dc.descriptionIsshiki, N., Tanabe, M., Ishizaka, K., Clinical significance of asymmetrical vocal cord tension (1977) Ann Otol, 86, pp. 58-66
dc.languageen
dc.publisher
dc.relationOtolaryngology - Head and Neck Surgery
dc.rightsfechado
dc.sourceScopus
dc.titleVibratory Pattern Of Vocal Folds Under Tension Asymmetry
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución