dc.creatorCamilo A.
dc.creatorDos Santos R.P.B.
dc.creatorColuci V.R.
dc.creatorGalvao D.S.
dc.date2012
dc.date2015-06-26T20:30:03Z
dc.date2015-11-26T14:27:02Z
dc.date2015-06-26T20:30:03Z
dc.date2015-11-26T14:27:02Z
dc.date.accessioned2018-03-28T21:30:06Z
dc.date.available2018-03-28T21:30:06Z
dc.identifier
dc.identifierMolecular Simulation. , v. 38, n. 1, p. 1 - 7, 2012.
dc.identifier8927022
dc.identifier10.1080/08927022.2011.597392
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84857208715&partnerID=40&md5=f3ea570eccdfe24dfade91e3b5c5e8a3
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97214
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97214
dc.identifier2-s2.0-84857208715
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246226
dc.descriptionIn this paper, we report a comparative parametric method 6 (PM6) and Recife model 1 (RM1) study of trans-stilbene in its ground and (excited) singlet, triplet and ionic (positive and negative polarons and bipolarons) states. We evaluated the accuracy of the recently developed PM6 and RM1 comparing the obtained results with other semi-empirical, ab initio methods and available experimental data. PM6 and RM1 predict non-planar ground and singlet states for trans-stilbene, in agreement with the PM5 and the Austin model 1. On the other hand, the PM3 predicts planar configurations, which is in agreement with the available experimental data. PM6 and RM1 overestimate the cis-trans isomerisation energy as well as the ionisation potential of both cis- and trans-stilbene. In spite of the developments of these new methods, PM3 continues to be the only one of these methods to correctly predict the conformation of stilbene. © 2012 Taylor & Francis.
dc.description38
dc.description1
dc.description1
dc.description7
dc.descriptionHückel, E., Quantum-theoretical contributions to the benzene problem. I. The electron configuration of benzene and related compounds (1931) Z. Phys., 70, pp. 204-286
dc.descriptionBoyd, D.B., Evidence that there is a future for semiempirical molecular orbital calculations (1997) Journal of Molecular Structure: THEOCHEM, 401 (3), pp. 219-225. , PII S0166128097000237
dc.descriptionClark, T., Quo Vadis semiempirical MO-theory? (2000) J. Mol. Struct. (Theochem), 530, pp. 1-10
dc.descriptionRocha, G.B., Freire, R.O., Simas, A.M., Stewart, J.J.P., RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I (2006) Journal of Computational Chemistry, 27 (10), pp. 1101-1111. , DOI 10.1002/jcc.20425
dc.descriptionStewart, J.J.P., Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements (2007) Journal of Molecular Modeling, 13 (12), pp. 1173-1213. , DOI 10.1007/s00894-007-0233-4
dc.descriptionBurroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., Holmes, A.B., Light-emitting diodes based on conjugated polymers (1990) Nature, 347 (6293), pp. 539-541
dc.descriptionBenjamm, I., Faraggi, E.Z., Avny, Y., Davidov, D., Neumann, R., Fluorinated poly(p-phenylenevinylene) copolymers: Preparation and use in light-emitting diodes (1996) Chemistry of Materials, 8 (2), pp. 352-355
dc.descriptionFaraggi, E.Z., Spectral tuning of electroluminescence in conjugated copolymers by application of an external electric field (1996) Advanced Materials, 8 (3), pp. 234-237
dc.descriptionGranstrom, M., Inganas, O., White light emission from a polymer blend light emitting diode (1996) Applied Physics Letters, 68 (2), pp. 147-149. , DOI 10.1063/1.116129, PII S0003695196001027
dc.descriptionGurge, R.M., Sarker, A., Lahti, P.M., Hu, B., Karasz, F.E., Red light emitting "push-pull" disubstituted poly(1,4-phenylenevinylenes) (1996) Macromolecules, 29 (12), pp. 4287-4292
dc.descriptionDiaz-Garcia, M.A., Hide, F., Schwartz, B.J., Andersson, M.R., Pei, Q., Heeger, A.J., Plastic lasers: Semiconducting polymers as a new class of solid-state laser materials (1997) Synthetic Metals, 84 (1-3), pp. 455-462. , PII S0379677996039847
dc.descriptionLemmer, U., Henning, R., Guss, W., Microcavity effects in a spincoated polymer2-layer system (1995) Appl. Phys. Lett., 66 (11), pp. 1301-1303
dc.descriptionYessler, N., Denton, G.J., Friend, R.H., Lasing from conjugatedpolymer microcavities (1996) Nature, 382 (22), pp. 695-697
dc.descriptionCao, Y., Yu, G., Heeger, A.J., Efficient, low operating voltage polymer light-emitting diodes with aluminum as the cathode material (1998) Adv. Mater., 10, pp. 917-920
dc.descriptionSon, S., Dodabalapur, A., Lovinger, A.J., Galvin, M.E., Luminescence enhancement by the introduction of disorder into poly(p-phenylene vinylene) (1995) Science, 269, pp. 376-378
dc.descriptionBurroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., Holmes, A.B., Light-emitting diodes based on conjugated polymers (1990) Nature, 347 (6293), pp. 539-541
dc.descriptionBurn, P.L., Holmes, A.B., Kraft, A., Bradley, D.D.C., Brown, A.R., Friend, R.H., Gymer, R.W., Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning (1992) Nature, 356 (6364), pp. 47-49. , DOI 10.1038/356047a0
dc.descriptionGreenham, N.C., Moratti, S.C., Bradley, D.D.C., Friend, R.H., Holmes, A.B., Efficient light-emitting-diodes based on polymers with high electron-affinities (1993) Nature, 365, pp. 628-630
dc.descriptionGalvão, D.S., Soos, Z.G., Ramasesha, S., Etemad, S., A parametric method-3 (pm3) study of trans-stilbene (1993) J. Chem. Phys., 98 (4), pp. 3016-3021
dc.descriptionVendrame, R., Coluci, V.R., Galvão, D.S., Comparative parametric method 5 (PM5) study of trans-stilbene (2004) J. Mol. Struct. (Theochem), 686, pp. 103-108
dc.descriptionHoekstra, A., Meertens, P., Vos, A., Refinement of crystalstructure of trans-stilbene (TSB) - Molecular-structure in crystalline and gaseous phases (1975) Acta Crystallogr. Sect. B, 31, pp. 2813-2817
dc.descriptionBernstein, J., Refinement of trans-stilbene - Comparison of 2 crystallographic studies (1975) Acta Crystallogr. Sect. B, 31, pp. 1268-1271
dc.descriptionTraetteberg, M., Frantsen, E.G., Mijhoff, F.C., Hoekstra, A., Gas electron-diffraction study of molecular-structure of transstilbene (1975) J. Mol. Struct., 26, pp. 57-68
dc.descriptionChiang, W.Y., Laane, J., Fluorescence-spectra and torsional potential functions for trans-stilbene in its s-0 and s-1(pi,pi(asterisk)) electronic states (1994) J. Chem. Phys., 100, pp. 8755-8767
dc.descriptionWaldeck, D.H., Photoisomerization dynamics of stilbenes (1991) Chem. Rev., 91, pp. 415-436. , (and references therein)
dc.descriptionChampagne, B.B., Pfanstiel, J.F., Plusquellic, D.F., Pratt, D.W., Van Herpen, W.M., Meerts, W.L., Trans-stilbene - A rigid, planar asymmetric-top in the zero-point vibrational levels of its S0 and S1 electronic states (1990) J. Phys. Chem., 94, pp. 6-8
dc.descriptionSpangler, L.H., Van Zee, R., Zwier, T.S., Assignment of the lowfrequency modes in trans-stilbene - Evidence for planarity in the isolated molecule (1987) J. Phys. Chem., 91, pp. 2782-2786
dc.descriptionStachelek, T.M., Pazoha, T.A., McClain, W.M., Drucker, R.D., Detection and assignment of phantom photochemical singlet of trans-stilbene by 2-photon excitation (1977) J. Chem. Phys., 66, pp. 4540-4543
dc.descriptionGreene, B.I., Hochstrasser, R.M., Weisman, R.B., Spectroscopic study of the picosecond photoisomerization of stilbene (1979) Chem. Phys. Lett., 62, pp. 427-430
dc.descriptionKwasniewski, S.P., Claes, L., Francois, J.-P., Deleuze, M.S., High level theoretical study of the structure and rotational barriers of trans-stilbene (2003) J. Chem. Phys., 118, pp. 7823-7836
dc.descriptionCatalan, J., On the non-planarity of trans-stilbene (2006) Chem. Phys. Lett., 421, pp. 134-137
dc.descriptionChowdary, P.D., Martinez, T.J., Gruebele, M., The vibrationally adiabatic torsional potential energy surface of trans-stilbene (2007) Chemical Physics Letters, 440 (1-3), pp. 7-11. , DOI 10.1016/j.cplett.2007.03.109, PII S0009261407004290
dc.descriptionAllinger, N.L., Burkert, U., (1982) Molecular Mechanics, American Chemical Society, , Washington, DC
dc.descriptionParr, R.G., Yang, W., (1989) Density Functional Theory of Atoms and Molecules, , Oxford University Press, New York
dc.descriptionStewart, J.P., Available at (2007) Computational Chemistry, , http://openmopac.net, Version 7.101W, Mopac
dc.descriptionSimpson, J.H., Rice, D.M., Karask, F.E., Investigation of h2so4- doped, ring-deuterated poly(para-phenylene vinylene) using solidstate H-2 quadrupole echo NMR-spectroscopy (1991) Polymer, 32, pp. 2340-2344
dc.descriptionSimpson Jeffrey, H., Egger Norbert, Masse Michael, A., Rice David, M., Karasz Frank, E., Solid-state 13C NMR characterization of annealed poly(p-phenylene vinylene) PPV films (1990) Journal of Polymer Science, Part B: Polymer Physics, 28 (10), pp. 1859-1869. , DOI 10.1002/polb.1990.090281015
dc.descriptionClaes, L., Kwasniewski, S., Deleuze, M.S., Francois, J.-P., Comparative study of the molecular structure of stilbene using molecular mechanics, Hartree-Fock and density functional theories (2001) Journal of Molecular Structure: THEOCHEM, 549 (1-2), pp. 63-67. , DOI 10.1016/S0166-1280(01)00496-1, PII S0166128001004961
dc.descriptionAllinger, N.L., Yuh, Y.H., Lii, J.-H., Molecular mechanics. The MM3 force field for hydrocarbons. 1 (1989) Journal of the American Chemical Society, 111 (23), pp. 8551-8566. , DOI 10.1021/ja00205a001
dc.descriptionLii, J.-H., Allinger, N.L., Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics (1989) Journal of the American Chemical Society, 111 (23), pp. 8566-8575. , DOI 10.1021/ja00205a002
dc.descriptionLii, J.-H., Allinger, N.L., Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons (1989) Journal of the American Chemical Society, 111 (23), pp. 8576-8582. , DOI 10.1021/ja00205a003
dc.descriptionDitchfield, R., Hehre, W.J., Pople, J.A., Self-consistent molecular-orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules (1971) J. Chem. Phys., 54, pp. 724-728
dc.descriptionHehre, W.J., Ditchfield, R., Pople, J.A., Self-consistent molecular-orbital methods. 12. Further extensions of Gaussiantype basis sets for use in molecular-orbital studies of organicmolecules (1972) J. Chem. Phys., 56, pp. 2257-2261
dc.descriptionBinning Jr., R.C., Curtiss, L.A., Compact contracted basis-sets for 3rd-row atoms - GA-KR (1990) J. Comp. Chem., 11, pp. 1206-1216
dc.descriptionBecke, A.D., A new mixing of Hartree-Fock and local densityfunctional theories (1993) J. Chem. Phys., 98, pp. 1372-1377
dc.descriptionBecke, A.D., Density-functional thermochemistry. 3. The role of exact exchange (1993) J. Chem. Phys., 98, pp. 5648-5652
dc.descriptionLee, C.T., Yang, W.T., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density (1988) Phys. Rev. B, 37, pp. 785-789
dc.descriptionKobayashi, T., Suzuki, H., Ogawa, K., Conformational-analysis of stilbenes by photo-electron spectroscopy (1982) Bull. Chem. Soc. Jpn, 55, pp. 1734-1738
dc.descriptionAlparone, A., Librando, V., Minniti, Z., Validation of semiempirical PM6 method for the prediction of molecular properties of polycyclic aromatic hydrocarbons and fullerenes (2008) Chem. Phys. Lett., 460, pp. 151-154
dc.descriptionRezac, J., Fanfrlik, J., Salahub, D., Hobza, P., Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes (2009) J. Chem. Theory Comp., 5, pp. 1749-1760
dc.descriptionPuzyn, T., Suzuki, N., Haranczyk, M., Rak, J., Calculation of quantum-mechanical descriptors for QSPR at the DFT level: Is it necessary? (2008) J. Chem Inf. Model., 48, pp. 1174-1180
dc.languageen
dc.publisher
dc.relationMolecular Simulation
dc.rightsfechado
dc.sourceScopus
dc.titleComparative Parametric Method 6 (pm6) And Recife Model 1 (rm1) Study Of Trans -stilbene
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución