dc.creatorDe Almeida A.C.
dc.creatorBarbosa S.M.
dc.creatorDe Lourdes Rios Barjas-Castro M.
dc.creatorOlalla-Saad S.T.
dc.creatorCondino-Neto A.
dc.date2012
dc.date2015-06-26T20:30:03Z
dc.date2015-11-26T14:26:59Z
dc.date2015-06-26T20:30:03Z
dc.date2015-11-26T14:26:59Z
dc.date.accessioned2018-03-28T21:30:04Z
dc.date.available2018-03-28T21:30:04Z
dc.identifier
dc.identifierImmunopharmacology And Immunotoxicology. , v. 34, n. 6, p. 1054 - 1059, 2012.
dc.identifier8923973
dc.identifier10.3109/08923973.2012.697470
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84868137227&partnerID=40&md5=029c05a77d4514e347f03696e1f19815
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97213
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97213
dc.identifier2-s2.0-84868137227
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246216
dc.descriptionBackground: Many cases of autoimmune hemolytic anemia have been reported after viral infection. Phagocyte activation and accompanying erythrophagocytosis are thought to result from proinflammatory cytokines released during viral infection. SIRP-α (signal regulatory protein-α), a receptor expressed on phagocytes, inhibits phagocytosis when bound to CD47 on the erythrocyte membrane. Ligation with CD47 results in SHP-1 recruitment to SIRP-α and dephosphorylation of specific downstream substrates involved in phagocytosis. SIRP-α ligation by CD47 may be inhibited by proinflammatory cytokines. Objectives: The aim of this work was to evaluate the effect of IFN-β, IFN-γ, and TNF-α on erythrophagocytosis and assess the effect on expression of SIRP-α and SHP-1 in human monocytes. Materials and methods: Monocytes were cultured ex vivo with IFN-β or IFN-γ/TNF-α. Erythrophagocytosis was determined by flow cytometry. SIRP-α and SHP-1 gene expression was determined by real time-PCR, while SIRP-α and SHP-1 protein expression was determined by western blot. Results: Erythrophagocytosis by monocytes significantly decreased after treatment with either IFN-β or IFN-γ/TNF-α. Monocytes cultured with IFN-γ/TNF-α showed increased SIRP-α gene and protein expression and SHP-1 gene expression. Monocytes cultured with IFN-β did not show any alteration in SIRP-α or SHP-1 expression. Conclusion: We conclude that IFN-β and IFN-γ/TNF-α decrease erythrophagocytosis by human monocytes in vitro, and this effect does not apparently require an increase in SIRP-α or SHP-1 expression. © 2012 Informa Healthcare USA, Inc.
dc.description34
dc.description6
dc.description1054
dc.description1059
dc.descriptionJavierre, B.M., Hernando, H., Ballestar, E., Environmental triggers and epigenetic deregulation in autoimmune disease (2011) Discov Med, 12, pp. 535-545
dc.descriptionDelogu, L.G., Deidda, S., Delitala, G., Manetti, R., Infectious diseases and autoimmunity (2011) J Infect Dev Ctries, 5, pp. 679-687
dc.descriptionFujinami, R.S., Von Herrath, M.G., Christen, U., Whitton, J.L., Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease (2006) Clin Microbiol Rev, 19, pp. 80-94
dc.descriptionMcCoy, L., Tsunoda, I., Fujinami, R.S., Multiple sclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation (2006) Autoimmunity, 39, pp. 9-19
dc.descriptionMusaji, A., Meite, M., Detalle, L., Franquin, S., Cormont, F., Prt, V., Izui, S., Coutelier, J.P., Enhancement of autoantibody pathogenicity by viral infections in mouse models of anemia and thrombocytopenia (2005) Autoimmun Rev, 4, pp. 247-252
dc.descriptionMeite, M., Lnard, S., Idrissi, M.E., Izui, S., Masson, P.L., Coutelier, J.P., Exacerbation of autoantibody-mediated hemolytic anemia by viral infection (2000) J Virol, 74, pp. 6045-6049
dc.descriptionVon Herrath, M.G., Oldstone, M.B., Virus-induced autoimmune disease (1996) Curr Opin Immunol, 8, pp. 878-885
dc.descriptionRamshaw, I.A., Ramsay, A.J., Karupiah, G., Rolph, M.S., Mahalingam, S., Ruby, J.C., Cytokines and immunity to viral infections (1997) Immunol Rev, 159, pp. 119-135
dc.descriptionCondino-Neto, A., Whitney, C., Newburger, P.E., Dexamethasone but not indomethacin inhibits human phagocyte nicotinamide adenine dinucleotide phosphate oxidase activity by downregulating expression of genes encoding oxidase components (1998) J Immunol, 161, pp. 4960-4967
dc.descriptionRay, J.C., Wang, J., Chan, J., Kirschner, D.E., The timing of TNF and IFN-gamma signaling affects macrophage activation strategies during Mycobacterium tuberculosis infection (2008) J Theor Biol, 252, pp. 24-38
dc.descriptionTomioka, H., Sato, K., Maw, W.W., Saito, H., The role of tumor necrosis factor, interferon-gamma, transforming growth factorbeta, and nitric oxide in the expression of immunosuppressive functions of splenic macrophages induced by Mycobacterium avium complex infection (1995) J Leukoc Biol, 58, pp. 704-712
dc.descriptionFluhr, H., Krenzer, S., Stein, G.M., Stork, B., Deperschmidt, M., Wallwiener, D., Wesselborg, S., Licht, P., Interferongamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis (2007) J Cell Sci, 120, pp. 4126-4133
dc.descriptionSuk, K., Kim, S., Kim, Y.H., Kim, K.A., Chang, I., Yagita, H., Shong, M., Lee, M.S., IFN-gamma/TNF-alpha synergism as the final effector in autoimmune diabetes: A key role for STAT1/IFN regulatory factor-1 pathway in pancreatic beta cell death (2001) J Immunol, 166, pp. 4481-4489
dc.descriptionHosseini-Moghaddam, S.M., Mousavi, A., Alavian, S.M., Is {beta} interferon a promising therapeutic option for the management of hepatitis C? (2009) J Antimicrob Chemother, 63, pp. 1097-1103
dc.descriptionCrow, M.K., Type I interferon in organ-targeted autoimmune and inflammatory diseases (2010) Arthritis Res Ther, 12 (SUPPL. 1), pp. S5
dc.descriptionOlsson, M., Nilsson, A., Oldenborg, P.A., Target cell CD47 regulates macrophage activation and erythrophagocytosis (2006) Transfus Clin Biol, 13, pp. 39-43
dc.descriptionIshikawa-Sekigami, T., Kaneko, Y., Okazawa, H., Tomizawa, T., Okajo, J., Saito, Y., Okuzawa, C., Nojima, Y., SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages (2006) Blood, 107, pp. 341-348
dc.descriptionJaiswal, S., Jamieson, C.H., Pang, W.W., Park, C.Y., Chao, M.P., Majeti, R., Traver, D., Weissman, I.L., CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis (2009) Cell, 138, pp. 271-285
dc.descriptionMajeti, R., Chao, M.P., Alizadeh, A.A., Pang, W.W., Jaiswal, S., Gibbs Jr., K.D., Van Rooijen, N., Weissman, I.L., CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells (2009) Cell, 138, pp. 286-299
dc.descriptionSpaargaren, M., Lymphoma spread? Target CD47-SIRPa! (2011) Blood, 118, pp. 4762-4764
dc.descriptionChao, M.P., Tang, C., Pachynski, R.K., Chin, R., Majeti, R., Weissman, I.L., Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy (2011) Blood, 118, pp. 4890-4901
dc.descriptionIde, M., Ohnishi, T., Murayama, M., Matsumoto, I., Yamada, K., Iwayama, Y., Dedova, I., Yoshikawa, T., Failure to support a genetic contribution of AKT1 polymorphisms and altered AKT signaling in schizophrenia (2006) J Neurochem, 99, pp. 277-287
dc.descriptionWaern, J.M., Yuan, Q., Rurich, U., Becker, P.D., Schulze, K., Strick-Marchand, H., Huntington, N.D., Bock, M., Ectopic expression of murine CD47 minimizes macrophage rejection of human hepatocyte xenografts in immunodeficient mice (2012) Hepatology, , in press)
dc.descriptionScalea, J., Hanecamp, I., Robson, S.C., Yamada, K., T-cellmediated immunological barriers to xenotransplantation (2012) Xenotransplantation, 19, pp. 23-30
dc.descriptionRaymond, M., Rubio, M., Fortin, G., Shalaby, K.H., Hammad, H., Lambrecht, B.N., Sarfati, M., Selective control of SIRP-alphapositive airway dendritic cell trafficking through CD47 is critical for the development of T(H)2-mediated allergic inflammation (2009) J Allergy Clin Immunol, 124, pp. 1333-42e1
dc.descriptionVerjan Garcia, N., Umemoto, E., Saito, Y., Yamasaki, M., Hata, E., Matozaki, T., Murakami, M., Miyasaka, M., SIRPa/CD172a regulates eosinophil homeostasis (2011) J Immunol, 187, pp. 2268-2277
dc.descriptionHealey, G., Veale, M.F., Sparrow, R.L., A fluorometric quantitative erythrophagocytosis assay using human THP-1 monocytic cells and PKH26-labelled red blood cells (2007) J Immunol Methods, 322, pp. 50-56
dc.descriptionMontgomery, D.C., (1991) Design And Analysis Of Experiments, , 3rd Ed. New York: John Wiley & Sons
dc.descriptionJungi, T.W., Brcic, M., Leutwyler, C., Pfister, H., Spycher, M.O., Interferon-gamma treatment impairs Fc receptor type II-mediated phagocytosis of human macrophages by a post-receptor-binding mechanism (1991) Immunology, 74, pp. 439-445
dc.descriptionFratti, R.A., Ghannoum, M.A., Edwards Jr., J.E., Filler, S.G., Gamma interferon protects endothelial cells from damage by Candida albicans by inhibiting endothelial cell phagocytosis (1996) Infect Immun, 64, pp. 4714-4718
dc.descriptionWillenborg, D.O., Fordham, S.A., Staykova, M.A., Ramshaw, I.A., Cowden, W.B., IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: A possible role for nitric oxide (1999) J Immunol, 163, pp. 5278-5286
dc.descriptionWillenborg, D.O., Staykova, M.A., Cowden, W.B., Our shifting understanding of the role of nitric oxide in autoimmune encephalomyelitis: A review (1999) J Neuroimmunol, 100, pp. 21-35
dc.descriptionPark, H., Li, Z., Yang, X.O., Chang, S.H., Nurieva, R., Wang, Y.H., Wang, Y., Dong, C., A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17 (2005) Nat Immunol, 6, pp. 1133-1141
dc.descriptionIsomi, P., Panesar, M., Annenkov, A., Clark, J.M., Foxwell, B.M., Chernajovsky, Y., Cope, A.P., Prolonged exposure of T cells to TNF down-regulates TCR zeta and expression of the TCR/CD3 complex at the cell surface (2001) J Immunol, 166, pp. 5495-5507
dc.descriptionKassiotis, G., Kollias, G., Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination (2001) J Exp Med, 193, pp. 427-434
dc.descriptionZakharova, M., Ziegler, H.K., Paradoxical anti-inflammatory actions of TNF-alpha: inhibition of IL-12 and IL-23 via TNF receptor 1 in macrophages and dendritic cells (2005) J Immunol, 175, pp. 5024-5033
dc.descriptionDe Almeida, A.C., Barbosa, S.M., Barjas-Castro, M.D.E.L., Olalla-Saad, S.T., Condino-Neto, A., The role of glucocorticoid in SIRP alpha and SHP-1 gene expression in AIHA patients (2009) Immunopharmacol Immunotoxicol, 31, pp. 636-640
dc.descriptionBurger, P., Hilarius-Stokman, P., De Korte, D., Van Den Berg, T.K., Van Bruggen, R., CD47 functions as a molecular switch for erythrocyte phagocytosis (2012) Blood, 119, pp. 5512-5521
dc.descriptionBabic, I., Schallhorn, A., Lindberg, F.P., Jirik, F.R., SHPS-1 induces aggregation of Ba/F3 pro-B cells via an interaction with CD47 (2000) J Immunol, 164, pp. 3652-3658
dc.descriptionTada, K., Tanaka, M., Hanayama, R., Miwa, K., Shinohara, A., Iwamatsu, A., Nagata, S., Tethering of apoptotic cells to phagocytes through binding of CD47 to Src homology 2 domain-bearing protein tyrosine phosphatase substrate-1 (2003) J Immunol, 171, pp. 5718-5726
dc.languageen
dc.publisher
dc.relationImmunopharmacology and Immunotoxicology
dc.rightsfechado
dc.sourceScopus
dc.titleIfn-β, Ifn-γ, And Tnf-α Decrease Erythrophagocytosis By Human Monocytes Independent Of Sirp-α Or Shp-1 Expression
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución