dc.creatorBatista P.D.
dc.creatorMulato M.
dc.creatorGraeff C.F.D.O.
dc.creatorFernandez F.J.R.
dc.creatorMarques F.D.C.
dc.date2006
dc.date2015-06-30T18:10:47Z
dc.date2015-11-26T14:26:50Z
dc.date2015-06-30T18:10:47Z
dc.date2015-11-26T14:26:50Z
dc.date.accessioned2018-03-28T21:29:54Z
dc.date.available2018-03-28T21:29:54Z
dc.identifier
dc.identifierBrazilian Journal Of Physics. , v. 36, n. 02:00:00, p. 478 - 481, 2006.
dc.identifier1039733
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33746061696&partnerID=40&md5=8cda6341058c383c85309c66ff4f9817
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103388
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103388
dc.identifier2-s2.0-33746061696
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246173
dc.descriptionExtended gate field-effect transistor (EGFET) is a device composed of a conventional ion-sensitive electrode and a MOSFET device, which can be applied to the measurement of ion content in a solution. This structure has a lot of advantages as compared to the Ion- Sensitive Field Effect Transistor (ISFET). In this work, we constructed an EGFET by connecting the sensing structure fabricated with SnO 2 to a commercial MOSFET (CD4007UB). From the numerical simulation of site binding model it is possible to determine some of the desirable characteristics of the films. We investigate and compare SnO 2 films prepared using both the Sol-gel and the Pechini methods. The aim is an amorphous material for the EGFET. The SnO 2 powder was obtained at different calcinating temperatures (200 - 500°C) and they were investigated by X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The films were investigated as pH sensors (range 2-11).
dc.description36
dc.description02:00:00
dc.description478
dc.description481
dc.descriptionYunqing, M., Jianrong, C., Keming, F., (2005) J. Biochen. Biophys. Methods, , in press
dc.descriptionBergveld, P., (2003) Sens. and Actuators B, 88, p. 1
dc.descriptionChi, L.-L., Chou, J.-C., Chung, W.-Y., Sun, T.-P., Hsiung, S.-K., (2000) Materials Chemistry and Physics, 63, p. 19
dc.descriptionSchöning, M.J., Poghossian, A., (2002) The Analyst, 127, p. 1137
dc.descriptionChou, J.-C., Wang, Y.-F., (2002) J. Appl Phys, 41, p. 5941
dc.descriptionChou, J.-C., K., P., Chen, Z.-J., (2003) J. Appl Phys, 42, p. 6790
dc.descriptionYates, D.E., Levine, S., Healy, T.W., (1974) J. Chem. Soc. Fraday Trans., 1
dc.descriptionFung, C.D., Cheung, P.W., Ko, W.H., (1986) IEEE Trans. Electron Devices ED-33, 1, p. 8
dc.descriptionAntognetti, P., Massobrio, G., (1988) Semiconductor Device Modeling with SPICE
dc.descriptionLiao, H.-K., Chi, L.-L., Chou, J.-C., Chung, W.-Y., Sun, T.-P., H., S.-K., (1999) Mat. Chem. and Phys., 59, p. 6
dc.descriptionKwon, D.-H., Cho, B.-W., Kim, C.-S., Shon, B.-K., (1996) Sens, and Actuators B, 34, p. 441
dc.descriptionLiao, H.-K., Chou, J.-C., Chung, W.-Y., Sun, T.-P., Hsiung, S.-K., (2000) Sens, and Actuators B, 65, p. 23
dc.descriptionChatelon, J.P., Terrier, C., Roger, J.A., (1997) Journal of Sol-gel Science and Technology, p. 10
dc.descriptionRodrigues, E.C.P.E., Olivi, P., (2003) J. of Physics and Chemistry of Solids, 64, p. 1105
dc.descriptionSiciliano, P., (2000) Sensors and Actuators B, 70, p. 153
dc.languageen
dc.publisher
dc.relationBrazilian Journal of Physics
dc.rightsfechado
dc.sourceScopus
dc.titleSno 2 Extended Gate Field-effect Transistor As Ph Sensor
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución