dc.creatorDe Pauli M.
dc.creatorPerez C.A.
dc.creatorPrado M.C.
dc.creatorAraujo D.H.C.
dc.creatorNeves B.R.A.
dc.creatorMalachias A.
dc.date2012
dc.date2015-06-26T20:29:47Z
dc.date2015-11-26T14:26:22Z
dc.date2015-06-26T20:29:47Z
dc.date2015-11-26T14:26:22Z
dc.date.accessioned2018-03-28T21:29:24Z
dc.date.available2018-03-28T21:29:24Z
dc.identifier
dc.identifierSynthetic Metals. , v. 161, n. 23-24, p. 2521 - 2525, 2012.
dc.identifier3796779
dc.identifier10.1016/j.synthmet.2011.09.010
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84855902602&partnerID=40&md5=c5adb18bfb26070c04ddfa35607778fd
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97171
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97171
dc.identifier2-s2.0-84855902602
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246065
dc.descriptionThe temperature evolution of self-assembled phosphonic acid multilayers was investigated by energy dispersive X-ray reflectivity and angular-resolved reflectivity. Energy dispersive measurements were performed in an experimental setup specially designed for the X-ray fluorescence beamline of the Brazilian Synchrotron Light Laboratory. It allows the precise monitoring of phase transitions observed in organic thin film and multilayer systems. The studied multilayers - obtained from dip coating of a solution of octadecylphosphonic acid - present different bilayer periodicities of 50 (straight bilayer) and 34 (tilted bilayer). Energy dispersive and angular-resolved data evidence re-organization of the lamellar ordering of octadecylphosphonic acid multilayers as a function of temperature. The energy dispersive technique presents many advantages over conventional methods such as short acquisition time, possibility to vary external parameters and high flux, making it suitable for light scatterers as polymers and other organic molecules. © 2011 Elsevier B.V. All rights reserved.
dc.description161
dc.description23-24
dc.description2521
dc.description2525
dc.descriptionKlauk, H., (2010) Chem. Soc. Rev., 39, pp. 2643-2666
dc.descriptionZschieschang, U., Ante, F., Schlörholz, M., Schmidt, M., Kern, K., Klauk, H., (2010) Adv. Mater., 22, pp. 4489-4493
dc.descriptionRivest, J.B., Swisher, S.L., Fong, L.K., Zheng, H.I., Alivisatos, A.P., (2011) ACS Nano, 5, pp. 3811-3816
dc.descriptionAls-Nielsen, J., MacMorrow, D., (2001) Elements of Modern X-ray Physics, , Wiley Chichester
dc.descriptionPietsch, U., Holy, V., Baumbach, T., (2004) High-Resolution X-ray Scattering: From Thin Films to Lateral Nanostructures, , Springer-Verlag New York
dc.descriptionMatsushita, T., Niwa, Y., Inada, Y., Nomura, M., Ishii, M., Sakurai, K., Arakawa, E., (2008) Appl. Phys. Lett., 92, pp. 0241031-0241033
dc.descriptionMukherjee, M., Bhattacharya, M., Sanyal, M.K., Geue, Th., Grenzer, J., Pietsch, U., (2002) Phys. Rev. e, 66. , 061801-161801-1
dc.descriptionBhattacharya, M., Mukherjee, M., Sanyal, M.K., (2003) J. Appl. Phys., 94, pp. 2882-2887
dc.descriptionBodenthin, Y., Grenzer, J., Lauter, R., Pietch, U., Lehmann, P., Kurth, D.G., Möhwald, H., (2002) J. Synchrotron Radiat., 9, pp. 206-209
dc.descriptionSwalen, J.D., Allara, D.L., Andrade, J.D., Chandross, E.A., Garoff, S., Israelachvili, J., McCarthy, T.J., Yu, H., (1987) Langmuir, 3, pp. 932-950
dc.descriptionSofos, M., Goldberger, J., Stone, D.A., Allen, J.E., Ma, Q., Wei-Wen Tsai, D.J.H., Lauhon, L.J., Stupp, S.I., (2009) Nat. Mater., 8, pp. 68-75
dc.descriptionRiepl, M., Mirskya, V.M., Novotnyb, I., Tvarozekb, V., Rehacekb, V., Wolfbeis, O.S., (1999) Anal. Chim. Acta, 392, pp. 77-84
dc.descriptionMende, L.S., Fechtenkötter, A., Müllen, K., Moons, E., Friend, R.H., MacKenzie, J.D., (2001) Science, 293, pp. 1119-1122
dc.descriptionAizenberg, J., Black, A.J., Whitesides, G.M., (1998) Nature, 394, pp. 868-871
dc.descriptionChitre, K., Yang, Q., Salami, T.O., Oliver, S.R., Cho, J., (2005) J. Eletron. Mater., 34, pp. 528-533
dc.descriptionSinapi, F., Julien, S., Auguste, D., Hevesi, L., Delhalle, J., Mekhalif, Z., (2008) Electrochim. Acta, 53, pp. 4228-4238
dc.descriptionNie, H.-Y., Walzak, M.J., McIntyre, N.S., (2006) J. Phys. Chem. B, 110, pp. 21101-21108
dc.descriptionMcClain, R.L., Breen, J.J., (2001) Lnagmuir, 17, pp. 5121-5124
dc.descriptionRui, S.W., Viswanathan, R., Zasadzinski, J.A., Israelachvili, J.N., (1995) Biophys. J., 68, pp. 171-178
dc.descriptionFontes, G.N., Malachias, A., Paniago, R.M., Neves, B.R.A., (2003) Langmuir, 19, pp. 3345-3349
dc.descriptionNie, H.-Y., Walzak, M.J., McIntyre, N.S., (2002) Langmuir, 18, pp. 2955-2958
dc.languageen
dc.publisher
dc.relationSynthetic Metals
dc.rightsfechado
dc.sourceScopus
dc.titleEnergy Dispersive X-ray Reflectivity Applied To The Study Of Thermal Stability Of Self-assembled Organic Multilayers: Results On Phosphonic Acids
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución