Actas de congresos
The Dynamics Of Formation Of Graphane-like Fluorinated Graphene Membranes (fluorographene): A Reactive Molecular Dynamics Study
Registro en:
9781605113210
Materials Research Society Symposium Proceedings. , v. 1344, n. , p. 101 - 106, 2012.
2729172
10.1557/opl.2011.1358
2-s2.0-83755178681
Autor
Santos R.P.B.
Autreto P.A.S.
Legoas S.B.
Galvao D.S.
Institución
Resumen
Using fully reactive molecular dynamics methodologies we investigated the structural and dynamical aspects of the fluorination mechanism leading to fluorographene formation from graphene membranes. Fluorination tends to produce significant defective areas on the membranes with variation on the typical carbon-carbon distances, sometimes with the presence of large holes due to carbon losses. The results obtained in our simulations are in good agreement with the broad distribution of values for the lattice parameter experimentally observed. We have also investigated mixed atmospheres composed by H and F atoms. When H is present in small quantities an expressive reduction on the rate of incorporation of fluorine was observed. On the other hand when fluorine atoms are present in small quantities in a hydrogen atmosphere, they induce an increasing on the hydrogen incorporation and the formation of locally self-organized structure of adsorbed H and F atoms. © 2011 Materials Research Society. 1344
101 106 Novoselov, K.S., (2004) Science, 306, p. 666 Cheng, S.H., (2010) Phys. Rev. B, 81, p. 205435 F. Withers, M. Duboist, and A.K. Savchenko, arxiv:1005.3474v1 (2010)Sofo, J., Chaudhari, A., Barber, G., (2007) Phys. Rev. B, 75, p. 153401 Ryu, S., (2008) Nano Lett., 8, p. 4597 Elias, D., (2009) Science, 323, p. 610 Sofo, J.O., Chaudhari, A.S., Barber, G.D., (2007) Phys. Rev. B, 75, p. 153401 Lueking, D., (2006) J. Am. Chem. Soc., 128, p. 7758 N. R. Ray, A. K. Srivastava, and, R. Grotzsche, arXiv:0802.3998v1 (2008)Leenaerts, O., Peelaers, H., Hernandez-Nieves, A.D., (2010) Phys. Rev. B, 82, p. 195436 Cheng, S.-H., Zou, K., Okino, F., Gutierrez, H.R., Gupta, A., Shen, N., Eklund, P.C., Zhu, J., (2010) Phys. Rev. B, 81, p. 205435 Nair, R.R., (2010) Small, 6, pp. 2773-2914 Robinson, J.T., Nano Lett., , in press, DOI: 10.1021/nl101437p Van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard III, W.A., (2001) J. Phys. Chem. A, 105, p. 9396 Van Duin, A.C.T., Damste, J.S.S., (2003) Org. Geochem., 34, p. 515 Chenoweth, K., Van Duin, A.C.T., Goddard III, W.A., (2008) J. Phys. Chem. A, 112, p. 1040 Plimpton, S., (1995) J. of Comp. Phys., 117, pp. 1-19 Flores, M.Z.S., Autreto, P.A.S., Legoas, S.B., Galvao, D.S., (2009) Nanotechnology, 20, p. 465704