dc.creatorVaz C.L.D.
dc.creatorBoldrini J.L.
dc.date2012
dc.date2015-06-26T20:29:25Z
dc.date2015-11-26T14:25:59Z
dc.date2015-06-26T20:29:25Z
dc.date2015-11-26T14:25:59Z
dc.date.accessioned2018-03-28T21:28:49Z
dc.date.available2018-03-28T21:28:49Z
dc.identifier
dc.identifierMathematical Methods In The Applied Sciences. , v. 35, n. 12, p. 1406 - 1414, 2012.
dc.identifier1704214
dc.identifier10.1002/mma.2505
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84864290509&partnerID=40&md5=01298ee1ae19a60c0fb1608dddbfd58e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97027
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97027
dc.identifier2-s2.0-84864290509
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1245927
dc.descriptionIn this article, under certain conditions, we prove the regularity for the solutions of an Allen-Cahn phase-field type system obtained as limits of approximate solutions constructed by using a semidiscrete spectral Galerkin method. With the help of this improved regularity, as one compares to previous results, we then derive error estimates for the approximate solutions in terms of the inverse of the eigenvalues of the Laplacian operator. The system under investigation may model the evolution of solidification or melting of certain binary alloys. Copyright © 2012 John Wiley & Sons, Ltd.
dc.description35
dc.description12
dc.description1406
dc.description1414
dc.descriptionBeckermann, C., Diepers, H.J., Steinbach, I., Karma, A., Tong, X., Modeling melt convection in phase-field simulations of solidification (1999) Journal of Computational Physics, 154, p. 468
dc.descriptionDiepers, H.J., Berckermann, C., Steinbach, C., Simulation of convection and repenting a binary alloy mush using the phase-field method (1999) Acta Materialia, 47 (13), p. 3663
dc.descriptionRappaz, J., Sheid, J.F., Existence of solutions to a phase-field model for the isothermal solidification process of binary alloy (2000) Mathematical Methods in the Applied Sciences, 23 (6), pp. 491-513
dc.descriptionVaz, C.L.D., Boldrini, J.L., (2011) A Mathematical Analysis of A Non-isothermal Allen-Cahn Type System, , pre-print), accepted for publicationn in the Mathematical Methods in the Applied Sciences
dc.descriptionMoroşanu, C., Motreanu, D., A generalized phase-field system (1999) Journal of Mathematical Analysis and Applications, 273, pp. 515-540
dc.descriptionEvans, L.C., (1998) Partial Differential Equations, , American Mathematical Society: Providence
dc.descriptionLadyzenskaja, O.A., Solonnikov, V.A., Ural'Ceva, N.N., (1968) Linear and Quasilinear Equations of Parabolic Type, , American Mathematical Society: Providence
dc.descriptionZheng, S., Nonlinear parabolic equations and hyperbolic-parabolic coupled system (1995) Pitman Monographs and Surveys in Pure and Applied Mathematics, 76. , Longman-Wiley: Essex
dc.languageen
dc.publisher
dc.relationMathematical Methods in the Applied Sciences
dc.rightsfechado
dc.sourceScopus
dc.titleA Mathematical Analysis Of A Nonisothermal Allen-cahn Type System: Error Estimates
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución