dc.creatorVaz C.L.D.
dc.creatorBoldrini J.L.
dc.date2012
dc.date2015-06-26T20:29:25Z
dc.date2015-11-26T14:25:58Z
dc.date2015-06-26T20:29:25Z
dc.date2015-11-26T14:25:58Z
dc.date.accessioned2018-03-28T21:28:46Z
dc.date.available2018-03-28T21:28:46Z
dc.identifier
dc.identifierMathematical Methods In The Applied Sciences. , v. 35, n. 12, p. 1392 - 1405, 2012.
dc.identifier1704214
dc.identifier10.1002/mma.2504
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84864285040&partnerID=40&md5=1c8a00f11c1f1ac45ca816c074615dba
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97026
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97026
dc.identifier2-s2.0-84864285040
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1245918
dc.descriptionExistence of solutions for a nonisothermal Allen-Cahn type system is proved by using a semidiscrete spectral Galerkin method together with degree theory and maximum principle. Regularity and uniqueness are obtained in a special situation for domains with dimension up to two and smooth enough data. The present system may model the evolution of solidification or melting processes occurring in certain binary alloys. Copyright © 2012 John Wiley & Sons, Ltd.
dc.description35
dc.description12
dc.description1392
dc.description1405
dc.descriptionBeckermann, C., Diepers, H.J., Steinbach, I., Karma, A., Tong, X., Modeling melt convection in phase-field simulations of solidification (1999) Journal of Computational Physics, 154, pp. 468-496
dc.descriptionDiepers, H.-J., Beckermann, C., Steinbach, I., Simulation of convection and ripening in a binary alloy mush using the phase-field method (1999) Acta Materialia, 47 (13), pp. 3663-3678. , DOI 10.1016/S1359-6454(99)00239-6
dc.descriptionBoldrini, J.L., Caretta, B.C., Fernández-Cara, E., Analysis of a two-phase field model for the solidication of an alloy (2009) Journal of Mathematical Analysis and Applications, 357, pp. 25-44
dc.descriptionJiang, J., Convergence to equilibrium for a parabolic-hyperbolic phase field model with Cattaneo heat flux law (2008) Journal of Mathematical Analysis and Applications, 341, pp. 149-169
dc.descriptionRubio, P.M., Planas, G., Real, J., Asymptotic behaviour of a phase-field model with three coupled equations without uniqueness (2009) Journal of Differential Equations, 246, pp. 4632-4652
dc.descriptionRappaz, J., Sheid, J.F., Existence of solutions to a phase-field model for the isothermal solidification process of binary alloy (2000) Mathematical Methods in the Applied Sciences, 23 (6), pp. 491-513
dc.descriptionMoroşanu, C., Motreanu, D., A generalized phase-field system (1999) Journal of Mathematical Analysis and Applications, 273, pp. 515-540
dc.descriptionEvans, L.C., (1998) Partial Differential Equations, , American Mathematical Society: Providence
dc.descriptionLadyẑenskaja, O.A., Solonnikov, V.A., Ural'Ceva, N.N., Linear and quasilinear equations of parabolic type (1995) Translations of Mathematical Monographs, , American Mathematical Society: Providence
dc.descriptionZheng, S., Nonlinear parabolic equations and hyperbolic-parabolic coupled system (1995) Pitman Monographs & Surveys in Pure & Applied Math, , Longman-Wiley: Essex
dc.descriptionVaz, C.L.D., Boldrini, J.L., (2011) A Mathematical Analysis of A Non-isothermal Allen-Cahn Type System: Error Estimates, , pre-print, accepted for publication in the Mathematical Methods in the Applied Sciences
dc.descriptionFeng, X., Prohl, A., Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows (2003) Numerische Mathematik, 94 (1), pp. 33-65. , DOI 10.1007/s00211-002-0413-1
dc.descriptionDeimling, K., (1984) Nonlinear Functional Analysis, , Springer-Verlag: Berlin
dc.descriptionLions, J.L., (1987) Control of Distributed Singular Systems, , John Wiley & Sons Inc: New York
dc.descriptionHenry, D., Geometric theory of semilinear parabolic equations (1981) Lecture Notes in Mathematics, 840. , Springer-Verlag: Berlin
dc.languageen
dc.publisher
dc.relationMathematical Methods in the Applied Sciences
dc.rightsfechado
dc.sourceScopus
dc.titleA Mathematical Analysis Of A Nonisothermal Allen-cahn Type System
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución