dc.creatorQuispe Rodriguez R.
dc.creatorDe Paiva W.P.
dc.creatorSollero P.
dc.creatorBertoni Rodrigues M.R.
dc.creatorDe Albuquerque E.L.
dc.date2012
dc.date2015-06-26T20:29:22Z
dc.date2015-11-26T14:25:57Z
dc.date2015-06-26T20:29:22Z
dc.date2015-11-26T14:25:57Z
dc.date.accessioned2018-03-28T21:28:45Z
dc.date.available2018-03-28T21:28:45Z
dc.identifier
dc.identifierInternational Journal Of Adhesion And Adhesives. , v. 37, n. , p. 26 - 36, 2012.
dc.identifier1437496
dc.identifier10.1016/j.ijadhadh.2012.01.009
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861644494&partnerID=40&md5=397c5828066627548093fb3397124fe5
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97007
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97007
dc.identifier2-s2.0-84861644494
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1245912
dc.descriptionAdhesively bonded joints are an alternative structural technique to welded, bolted or riveted joints, presenting better load transfer and stress distributions. Most analytical formulations for stress-strain analysis consider maximum values as failure criteria. Several failure criteria based on fracture mechanics and extensive evaluation of experimental data are also available in literature. The main difficulty with these two criteria is the need to perform numerous tests, resulting in expensive methods and usually applicable to a particular material combination. This paper reviews several linear and non-linear analytical models of stress distributions in adhesively bonded joints. These models were implemented in a user-friendly software. The developed software allows evaluation of stress distributions for each analytical solution and also features the comparison among these solutions and numerical results. Comparison among analytical and numerical analyses was achieved by the interaction between the MATLAB code and ABAQUS models using Python script. Different failure criteria were also reviewed and implemented. The bond strain energy density criteria combine shear and peel effects. Results obtained by these criteria are compared with numerical results and experimental data. © 2012 Elsevier Ltd. All rights reserved.
dc.description37
dc.description
dc.description26
dc.description36
dc.descriptionDa Silva, L.F.M., Lima, R.F.T., Teixeira, R.M.S., Development of a computer program for the design of adhesive joints (2009) J Adhes, 85, pp. 889-918
dc.descriptionDragoni, E., Goglio, L., Kleiner, F., Designing bonded joints by means of the JointCalc software (2010) Int J Adhes Adhes, 30, pp. 267-280
dc.descriptionVolkersen, O., (1938) Luftfahrtforschung, pp. 15-41
dc.descriptionShigley, J.E., Mischke, C.R., Adhesive bonding and design considerations (2003) Mechanical Engineering Design, pp. 562-578. , 6th ed. McGraw-Hill [Chapters 9-11]
dc.descriptionCrocombe, A.D., Ashcroft, I., Simple lap joint geometry (2010) Modeling of Adhesively Bonded Joints, pp. 3-23. , L.F.M. da Silva, A. Öchsner, Springer [Chapter 1]
dc.descriptionGoland, M., Reissner, E., (1944) J Appl Mech, 66, p. 17
dc.descriptionHart-Smith, L.J., (1973) NASA Contract Report, , NASA TR-112236
dc.descriptionOjalvo, I.U., Eidinoff, H.L., Bond thickness effects upon stresses in single-lap adhesive joints (1978) AIAA J, 16, pp. 204-211
dc.descriptionRandolph, A., Clifford, M., Improved 2D model for bonded composite joints (2004) Int J Adhes Adhes, 24, pp. 389-405
dc.descriptionDa Silva, L.F.M., Rodrigues, T.N.S.S., Figueiredo, M.A.V., De Moura, M.F.S.F., Chousal, J.A.G., Effect of adhesive type and thickness on the lap shear strength (2006) J Adhes, 82, pp. 1091-1115
dc.descriptionDa Silva, L.F.M., Das Neves, P.J.C., Adams, R.D., Wang, A., Spelt, J.K., Analytical models of adhesively bonded joints - Part II: Comparative study (2009) Int J Adhes Adhes, 29, pp. 331-341
dc.descriptionGreenwood, L., Boag, T., McLaren, A., Stress distribution in lap joints (1969) Adhesion: Fundamentals and Practice, pp. 273-279. , London: McLaren and Sons Ltd
dc.descriptionCrocombe, A., Tatarek, A., A unified approach to adhesive joint analysis (1985) Proceedings of Adhesives, Sealants and Encapsulants 85, , London: Plastic and Rubber Institute
dc.descriptionAdams, R.D., Gregory, D.A., Panes, G.A., Effect of three dimensional stresses on the failure of single lap joints (1994) Proceedings of Euradh, pp. 228-231
dc.descriptionHart-Smith, L.J., Designing to minimize peel stresses in adhesive bonded joints (1985) Delamination and Debonding of Materials, pp. 238-266. , Johnson WS, editor Pittsburgh
dc.descriptionHarris, J., Adams, R.D., Strength prediction of bonded single lap joints by non-linear finite element methods (1984) Int J Adhes Adhes, 4, pp. 65-78
dc.descriptionCrocombe, A., Bigwood, D., Richardson, G., Analysing structural adhesive joints for failure (1990) Int J Adhes Adhes, 10, pp. 167-178
dc.descriptionIkegami, K., Takeshita, T., Matsuo, K., Sugibayashi, T., Strength of adhesively bonded scarf joints between glass fibre reinforced plastics and metals (1990) Int J Adhes Adhes, 103, pp. 199-206
dc.descriptionCharalambides, M., Kinloch, A., Matthews, F., Strength prediction of bonded joints (1997) Proceedings of AGARD Conference on Bolted/bonded Joints in Polymeric Composites
dc.descriptionLee, S., Lee, G., Development of a failure model for the adhesively bonded tubular single lap joint (1992) J Adhes, 40, pp. 1-14
dc.descriptionCrocombe, A., Adams, R.D., An elastoplastic investigation of the peel test (1982) J Adhes, 13, pp. 241-267
dc.descriptionZhao, X., Adams, R.D., Da Silva, L.F.M., Single lap joints with rounded adherend corners: Experimental results and strength prediction (2011) J Adhes Sci Technol, 25, pp. 837-856
dc.descriptionClarke, J., McGregor, I., Ultimate tensile stress over a zone: A new failure criterion for adhesive joints (1993) J Adhes, 42, pp. 227-245
dc.descriptionTowse, A., Davies, R., Clarke, A., Wisnom, M., Adams, R.D., Potter, K., The design and analysis of high load intensity adhesively bonded double lap joints (1997) Proceedings of the Fourth International Conference on Deformation and Fracture of Composites, Manchester, pp. 479-488
dc.descriptionTowse, A., Potter, K., Wisnom, M., Adams, R.D., A novel comb joint concept for high strength unidirectional carbon fibre bonded joints (1996) Proceedings of the 11th International Conference on Composite Materials, Goald Coast, pp. 95-101
dc.descriptionTrantina, G., Fracture mechanics approach to adhesive joints (1972) J Compos Mater, 6, pp. 192-207
dc.descriptionChow, C., Lu, T., Analysis of failure properties and strength of structural adhesive joints with damage mechanics (1992) Int J Damage Mech, 1, pp. 404-434
dc.descriptionCrocombe, A., Global yielding as a failure criteria for bonded joints (1989) Int J Adhes Adhes, 9, pp. 145-153
dc.descriptionSchmit, F., Fraisse, P., Fracture mechanics analysis of the strength of bonded joints (1992) Materiaux et Techniques, 80, pp. 55-63
dc.descriptionCrocombe, A., Kinloch, A., MTS adhesives project 2: Failure modes and criteria Review of Adhesive Bond Failure Criteria, , Report 1
dc.descriptionAugust 1994
dc.descriptionTong, L., Strength of adhesively bonded single-lap and lap-shear joints (1998) Int J Solids Struct, 35, pp. 2601-2616
dc.descriptionChen, Z., Adams, R.D., Da Silva, L.F.M., Prediction of crack initiation and propagation of adhesive lap joints using an energy failure criterion (2011) Eng Fract Mech, 78, pp. 990-1007
dc.descriptionZhao, X., Adams, R.D., Da Silva, L.F.M., A new method for the determination of bending moments in single lap joints (2010) Int J Adhes Adhes, 30, pp. 63-71
dc.descriptionDa Silva, L.F.M., Failure strength tests (2011) A Handbook of Adhesion Technology, , L.F.M. da Silva, A. Öchsner, R.D. Adams, Springer
dc.languageen
dc.publisher
dc.relationInternational Journal of Adhesion and Adhesives
dc.rightsfechado
dc.sourceScopus
dc.titleFailure Criteria For Adhesively Bonded Joints
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución