Artículos de revistas
Long-term Power Transmission Failures In Southeastern Brazil And The Geophysical Environment
Registro en:
Surveys In Geophysics. , v. 33, n. 5, p. 973 - 989, 2012.
1693298
10.1007/s10712-012-9191-1
2-s2.0-84864296059
Autor
Duro M.A.S.
Kaufmann P.
Bertoni F.C.P.
Rodrigues E.C.N.
Filho J.P.
Institución
Resumen
High-voltage transmission networks represent a large electrical circuit just above the ground subjected to a number of transient overcharges of various kinds, some of which may lead to failures. Some failures might be related to anomalies of the geophysical environment. We have analyzed one unprecedented long series of transmission grid failures (9 years) on high-voltage networks located in São Paulo state, southeastern Brazil, from 1998 to 2006, which includes an important fraction of the past solar activity cycle 23. Ninety-five distinct failure causes were given by the power line operator to explain the transmission grid shut downs. Most failures were attributed to atmospheric discharges, corresponding to 1,957 failures out of a total of 4,572 for the whole period at 138 kV, and 170 out of 763 at 440 kV, respectively. They correspond to less than one ten thousandth of the actual number of atmospheric discharges recorded in the same area, demonstrating the grid's high resilience to breakdowns due to lightning. A clear concentration of failures in the region's thunderstorm season has been found. A significant 67 and 77% reduction in the number of failure rates per year has been found for the 138 and 440 kV grids, respectively, for the period studied, in good correspondence with the decay in the sunspot numbers. No obvious correlation was found between power failures and the planetary index of geomagnetic activity or major geomagnetic storms in the period, either on short or on long time scales. Assuming that the dependence of the electrosphere/ionosphere-ground coupling on the external geophysical environment plays a major role in explaining the reduction in power failures as the solar cycle wanes, it is suggested that the increase in atmosphere conductivity caused by the larger cosmic ray flux then reduces the threshold voltage required to produce lightning strokes, so reducing their effectiveness in disrupting high-voltage power lines. © 2012 Springer Science+Business Media B.V. 33 5 973 989 Abdu, M.A., Souza, J.R., Sobral, J.H.A., Batista, I.S., Magnetic storm associated disturbance dynamo effects in the low and equatorial latitude ionosphere (2006) Recurrent Magnetic Storms: Corotating Solar Wind Streams, Geophysical Monograph 167, AGU Books Board, pp. 283-304. , In: Tsurutani B, McPherron R, Gonzalez W, Lu G, Sobral JHA, Gopalswamy N Aplin, K.L., Harrison, R.G., Rycroft, M.J., Investigating earth's atmospheric electricity: a role model for planetary studies (2008) Space Sci Rev, 137, pp. 11-27. , doi:10.1007/s11214-008-9372-x Barnes, P.R., Rizy, D.T., McConnell, B.W., Electric utility industry experience with geomagnetic disturbances (1991) Oak Ridge National Laboratory-Power Systems Technology Program, , Report ORNL-6665 Bevington, P.R., Robinson, D.K., (1992) Data Reduction and Error Analysis for the Physical Sciences, pp. 256-257. , Boston: McGraw-Hill Bolduc, L., GIC observations and studies in the Hydro-Québec power system (2002) J Atmosph Solar Terr Phys, 64, pp. 1793-1802. , doi:10.1016/S1364-6826(02)00128-1 Boteler, D.H., Pirjola, R.J., Nevanlinna, H., The effects of geomagnetic disturbances on electrical systems at the earth's surface (1998) Adv Space Res, 22, pp. 17-21. , doi:10.1016/S0273-1177(97)01096-X Eastwood, J.P., The science of space weather (2008) Phil Trans R Soc A, 366, pp. 4489-4500. , doi:10.1098/rsta.2008.0161 Elovaara, J., Finnish experiences with grid effects of GICs (2007) Space Weather, Astrophysics and Space Science Library, 344, pp. 311-326. , In: Jean Lilensten (ed), doi: 10. 1007/1-4020-5446-7_27 Freier, G.D., A 10-year study of thunderstorm electric fields (1978) J Geophys Res, 83, pp. 1373-1376. , doi:10.1029/JC083iC03p01373 Harrison, R.G., The global atmospheric electrical circuit and climate (2004) Surv Geophys, 25, pp. 441-484. , doi:10.1007/s10712-004-5439-8 Hoyt, D.V., Schatten, K.H., (1997) The Role of the Sun in Climate Change, pp. 143-152. , New York: Oxford University Press Huttunen, K.E.J., Kilpua, S.P., Pulkkinen, A., Viljanen, A., Tanskanen, E., Solar wind drivers of large geomagnetically induced currents during the solar cycle 23 (2008) Space Weather, 6, pp. S10002. , doi:10.1029/2007SW000374 Kappenman, J.G., An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent sun-earth connection events of 20-31 October 2003 and a comparative valuation with other contemporary storms (2005) Space Weather, 3, pp. S08C1. , doi: 10. 1029/2004SW000128 Kivelson, M.G., Russell, C.T., (1995) Introduction to Space Physics, p. 568. , Cambridge: Cambridge University Press Lanzerotti, L.J., Geomagnetic induction effects in ground-based systems (1983) Space Sci Rev, 34, pp. 347-356. , doi:10.1007/BF00175289 Lanzerotti, L.J., Space storms and space weather hazards (2001) Proceedings of the NATO Advanced Study Institute On Space Storms and Space Weather Hazards, Held In Hersonissos, p. 313. , In: Daglis IA, Crete, Greece, 19-29 June, 2000, Published by Kluwer Lanzerotti, L.J., Thomson, D.J., Maclennan, C.G., Engineering issues in space weather (1999) Modern Radio Science 1999, pp. 25-50. , M. A. Stuchly (Ed.), Oxford: International Union of Radio Science (URSI), Oxford University Press Molinski, T.S., Why utilities respect geomagnetically induced currents (2002) J Atmosph Solar Terr Phys, 64, pp. 1765-1778. , doi:10.1016/S1364-6826(02)00126-8 Molinski, T.S., Feero, W.E., Damsky, B.L., Shielding grids from solar storms (2000) Spectrum IEEE, 37, pp. 55-60. , doi:10.1109/6.880955 (1998), http://www.ngdc.noaa.gov/stp/SOLAR/, NOAA, available at(2010), http://www.ngdc.noaa.gov/geomag/WMM/data/WMM2010/wmm-F10.pdf, NOAA, available atPinto Jr., O., (2009) Private Communication Pinto Jr., O., Pinto, I.R.C.A., Naccarato, K.P., Maximum cloud-to-ground lightning flash densities observed by lightning location systems in the tropical region: a review (2007) Atmos Res, 84, pp. 189-200. , doi:10.1016/j.atmosres.2006.11.007 Pirjola, R., Effects of space weather on high-latitude ground systems (2005) Adv Space Res, 36, pp. 2231-2240. , doi:10.1016/j.asr.2003.04.074 Pirjola, R., Calculation of geomagnetically induced currents (GIC) in a high-voltage electric power transmission system and estimation of effects of overhead shield wires on GIC modeling (2007) J Atmosph Solar Terr Phys, 69, pp. 1305-1311. , doi:10.1016/j.jastp.2007.04.001 Pirjola, R., Viljanen, A., Pulkkinen, A., Amm, O., Space weather risk in power systems and pipelines (2000) Phys Chem Earth, 25, pp. 333-337. , doi:10.1016/S1464-1917(00)00027-1 Roble, R.G., On solar-terrestrial relationships in atmospheric electricity (1985) J Geophys Res, 90, pp. 6000-6012. , doi:10.1029/JD090iD04p06000 Rycroft, M.J., Electrical processes coupling the atmosphere and ionosphere: an overview (2006) J Atmosph Solar Terr Phys, 68, pp. 445-456. , doi:10.1016/j.jastp.2005.04.009 Rycroft, M.J., Israelsson, S., Price, C., The global atmospheric electric circuit, solar activity and climate change (2000) J Atmosph Solar Terr Phys, 62, pp. 1563-1576. , doi:10.1016/S1364-6826(00)00112-7 Stauning, P., High-voltage Power grid disturbances during geomagnetic storms (2002) Proceedings of SOLSPA: Proceedings of the 2nd Solar Cycle and Space Weather Euroconference, pp. 521-524. , Vico Equense, Italy, 24-29 September 2001, ESA SP-477, Noordwijk: ESA Publications Division, ISBN 92-9092-749-6 Stozhkov, Y.I., The role of cosmic rays in the atmosphere (2003) J Phys G Nucl Part Phys, 29, pp. 913-923 Stozhkov, Y.I., Svirzhevsky, N.S., Makhmutov, V.S., Cosmic ray measurements in the atmosphere (2001) Workshop On Ion-aerosol-cloud Interactions, pp. 41-62. , CERN, Geneva, Switzerland, 18-20 Apr 2001 Stozhkov, Y.I., Ermakov, V.I., Makhmutov, V.S., Cosmic rays and atmospheric processes (2001) Proceedings of the 27th International Cosmic Ray Conference, 10, pp. 4157S. , 07-15 August, Hamburg Germany-International Union of Pure and Applied Physics (IUPAP), ICRC Svensmark, H., Friis-Christensen, E., Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships (1997) J Atmosph Solar Terr Phys, 59, pp. 1225-1232. , doi:10.1016/S1364-6826(97)00001-1 Thomson, D.J., Lanzerotti, L.J., Vernon, L.V., Lessard, M.R., Smith, L.T.P., Solar modal structure of the engineering environment (2007) Proc IEEE, 95, pp. 1085-1132 Thomson, A.W.P., Gaunt, C.T., Cilliers, P., Wild, J.A., Opperman, B., McKinnell, L.A., Kotze, P., Lotz, S.I., Present day challenges in understanding the geomagnetic hazard to national power grids (2010) Adv Space Res, 45, pp. 1182-1190. , doi:10.1016/j.asr.2009.11.023 Tinsley, B.A., Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere (2000) Space Sci Rev, 94, pp. 231-258 Tinsley, B.A., Yu, F., Atmospheric ionization and clouds as links between solar activity and climate (2004) Solar Variability and Its Effects On Climate, Geophysical Monograph 141, American Geophysical Union, pp. 321-339. , In: Pap JM, Fox P, Frohlich C, Hudson HS, Kuhn J, McCormack J, North G, Sprigg W, Wu ST, Washington, DC, USA Trivedi, N.B., Vitorello, I., Kabata, W., Dutra, S.L.G., Padilha, A.L., Bologna, M.S., de Pádua, M.B., Viljanen, A., Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: a case study (2007) Space Weather, 5, pp. S04004. , doi:10.1029/2006SW000282 Watari, S., Kunitake, M., Kitamura, K., Hori, T., Kikuchi, T., Shiokawa, K., Nishitani, N., Tsuneta, Y., Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan (2009) Space Weather, 7, pp. S03002. , doi:10.1029/2008SW000417