Artículos de revistas
Neural Networks To Formulate Special Fats
Registro en:
Grasas Y Aceites. , v. 63, n. 3, p. 245 - 252, 2012.
173495
10.3989/gya.119011
2-s2.0-84863914986
Autor
Garcia R.K.
Moreira Gandra K.
Block J.M.
Barrera-Arellanoa D.
Institución
Resumen
Neural networks are a branch of artificial intelligence based on the structure and development of biological systems, having as its main characteristic the ability to learn and generalize knowledge. They are used for solving complex problems for which traditional computing systems have a low efficiency. To date, applications have been proposed for different sectors and activities. In the area of fats and oils, the use of neural networks has focused mainly on two issues: the detection of adulteration and the development of fatty products. The formulation of fats for specific uses is the classic case of a complex problem where an expert or group of experts defines the proportions of each base, which, when mixed, provide the specifications for the desired product. Some conventional computer systems are currently available to assist the experts; however, these systems have some shortcomings. This article describes in detail a system for formulating fatty products, shortenings or special fats, from three or more components by using neural networks (MIX). All stages of development, including design, construction, training, evaluation, and operation of the network will be outlined. 63 3 245 252 Anklam, E., Bassani, M.R., Eiberger, T., Kriebel, S., Lipp, M., Matissek, R., Characterization of cocoa butters and other vegetable fats by pyrolysis-mass spectrometry (1997) Fresenius' Journal of Analytical Chemistry, 357 (7), pp. 981-984 Arteaga, G.E., Nakaii, S., Predicting protein functionality with artificial neural networks: Foaming and emulsifying properties (1993) J. Food Sci., 58, pp. 1152-1156 Barrera-Arellano, D., Akamine, E.A., Rka, G., Gandra, K.M., Zero trans fats formulation through a neural network operated with five components: Two soybean-soybean interesterified fats, palm, soybean and palm kernel oils (2011) 9th Euro Fed Lipid Congress, , Rotterdam, The Netherlands, Abstract. Barrera-Arellano D, Block JM, Grimaldi R, Figueiredo Gomide Fac, M.F., Almeida, R.R., (2005) Programa MIX, Software for the Formulation of Fats with Neural Networks, , Register INPI 98003155, Campinas, Brazil Barbosa, A.H., Freitas, M.S.R., Neves, F.A., Confiabilidade estrutural utilizando o método de Monte Carlo e redes neurais (2005) Rev. Esc. de Minas, 58, pp. 247-255 Barile, D., Coisson, J.D., Arlorio, M., Rinaldi, M., Identification of production area of Ossolano Italian cheese with chemometric complex approach (2006) Food Control, 17 (3), pp. 197-206. , DOI 10.1016/j.foodcont.2004.10.016, PII S0956713504002336 Berg, E.P., Engel, B.A., Forrest, J.C., Pork Carcass Composition Derived from a Neural Network Model of Electromagnetic Scans (1998) Journal of Animal Science, 76 (1), pp. 18-22 Block, J.M., Barrera-Arellano, D., Figueiredo, M.F., Gomide, F.A.C., Blending process optimization into special fat formulation by neural networks (1997) JAOCS, Journal of the American Oil Chemists' Society, 74 (12), pp. 1537-1541 Block, J.M., Barrera-Arellano, D., Figueiredo, M.F., Gomide, F.C., Sauer, L., Formulation of special fats by neural networks: A statistical approach (1999) JAOCS, Journal of the American Oil Chemists' Society, 76 (11), pp. 1357-1361 Block, J.M., Barrera-Arellano, D., Almeida, R., Gomide, F.C., Moretti, R.B., Formulation of fats using neural networks: Commercial products and pilot-plant production (2003) Grasas y Aceites, 54 (3), pp. 240-244 Borggaard, C., Madsen, N.T., Thodberg, H.H., In-line image analysis in the slaughter industry, illustrated by Beef Carcass Classification (1996) Meat Sci., 43, pp. 151-163 Lal, B., Importancia de la instrumentación y computarización en programas de calidad total (1994) Aceites y Grasas, 15, pp. 99-102 Carrapiso, A.I., Ventanas, J., Jurado, A., Garcia, C., An electronic nose to classify Iberian pig fats with different fatty acid composition (2001) JAOCS, Journal of the American Oil Chemists' Society, 78 (4), pp. 415-418 Cebula, D.J., Smith, K.W., Differential scanning calorimetry of confectionery fats. Pure triglycerides: Effects of cooling and heating rate variation (1991) J. Am. Oil Chem. Soc., 68, pp. 591-595 De Cerqueira, E.O., De Andrade, J.C., Poppi, R.J., Mello, C., Neural networks and its applications in multivariate calibration (2001) Quimica Nova, 24 (6), pp. 864-873 Chiu, M.C., Gioielli, L.A., Grimaldi, R., Lipídios estruturados obtidos a partir da mistura de gordura de frango, sua estearina e triacilgliceróis de cadeia média, II-pontos de amolecimento e fusão (2008) Quim. Nova, 31, pp. 238-243 Cimpoiu, C., Cristea, V., Hosu, A., Sandru, M., Seserman, L., Antioxidant activity prediction and classification of some teas using artificial neural networks (2011) Food Chem., 127, pp. 1323-1328 Cheroutre-Vialette, M., Lebert, A., Application of recurrent neural network to predict bacterial growth in dynamic conditions (2002) International Journal of Food Microbiology, 73 (2-3), pp. 107-118. , DOI 10.1016/S0168-1605(01)00642-0, PII S0168160501006420 Da Cruz, A.G., Walter, E.H.M., Cadena, R.S., Faria, J.A.F., Bolini, H.M.A., Franttini-Fileti, A.M., Monitoring the authenticity of low-fat yogurts by an artificial neural network J. Dairy Sci., 92, pp. 4797-4804 Daniels, R.L., Hyun, J.K., Min, D.B., Hydrogenation and interesterification effects on the oxidative stability and melting point of soybean oil (2006) Journal of Agricultural and Food Chemistry, 54 (16), pp. 6011-6015. , DOI 10.1021/jf053263r Eyng, E., Fileti, A.M.F., Control of absorption columns in the bioethanol process: Influence of measurement uncertainties (2010) Eng. Appl. Artif. Intel., 23, pp. 271-282 Erickson, D.R., Erickson, M.D., Hydrogenation and base stock formulation procedures (1995) Pratical Handbook of Soybean Processing and Utilization, pp. 218-238. , en Erickson DR (ed.). AOCS Press, Champaign Gallegos-Infante, J.A., Rocha-Guzman, N.E., Gonzalez-Laredo, R.F., Rico-Martinez, R., The kinetics of crystallization of tripalmitin in olive oil: An artificial neural network approach (2002) Journal of Food Lipids, 9 (1), pp. 73-86 Gandra, K.M., (2011) Formulação de Gorduras Zero Trans Para Recheio de Biscoitos Utilizando Redes Neurais, , University of Campinas (UNICAMP). Campinas, Brazil Gandra, K.M., Rka, G., Block, J.M., Barrera-Arellano, D., Construction and training of a neural network for the formulation of specialty fats using interesterified fats (2009) World Congress on Oils and Fats & 28th ISF Congress. Oils and Fats Essential for Life-Program & Abstract Book Sydney, pp. 117-118 Garcia, R.K.A., Formulação de Gorduras Para Aplicação em Margarinas Zero Trans Com Redes Neurais A Partir de Gorduras Interesterificadas (2010) University of Campinas (UNICAMP). Campinas, Brazil García, R.K.A., Gandra, K.M., Barrera-Arellano, D., Formulação de blends para aplicação em margarinas zero trans por redes neurais baseado no SFC e ponto de fusão de gorduras comerciais (2010) V Simpósio Internacional Tendências e Inovaçoes em Tecnologia de Óleos e Gorduras, , Campinas, Brazil Glassey, J., Montague, G.A., Ward, A.G., Kara, B.V., Artificial neural network based experimental design procdures for enhancing fermentation development (1994) Biotechnology and Bioengineering, 44 (4), pp. 397-405. , DOI 10.1002/bit.260440402 Gomes, H.M., Awruch, A.M., Comparison of response surface and neural network with other methods for structural reliability analysis (2004) Structural Safety, 26 (1), pp. 49-67. , DOI 10.1016/S0167-4730(03)00022-5 Goodacre, R., Kell, D.B., Bianchi, G., Rapid assessment of the adulteration of virgin olive oils by other seed oils using pyrolysis mass-spectrometry and artificial neural networks (1993) J. Sci. Food Agr., 63, pp. 297-307 Goshawk, J.A., Binding, D.M., Kell, D.B., Goodacre, R., Rheological phenomena occurring during the shearing flow of mayonnaise (1998) Journal of Rheology, 42 (6), pp. 1537-1553 Haykin, S., (1999) Neural Networks: A Comprehensive Foundation, , Prentice Hall Englewood Cliffs, NJ Haugen, J.E., Electronic noses in food analysis (2001) Headspace Analysis of Foods and Flavors: Theory and Practice (Advancesin Experimental Medicine and Biology), 488, pp. 43-57. , Rouseff L.R., Cadwallader K.R. (ed.). Kluwer Academic Plenum Publishers, New York Huang, Y., Whittaker, A.D., Lacey, R.E., Neural network prediction modeling for a continuous, snack food frying process (1998) Transactions of the American Society of Agricultural Engineers, 41 (5), pp. 1511-1517 Humphrey, K.L., Narine, S.S., A comparison of lipid shortening functionality as a function of molecular ensemble and shear: Crystallization and melting (2004) Food Research International, 37 (1), pp. 11-27. , DOI 10.1016/j.foodres.2003.09.012 Hush, D.R., Horne, B.G., Progress in supervised neural networks (1993) IEEE Signal Proc. Mag., 10, pp. 8-39 Indahl, U.G., Sahni, N.S., Kirkhus, B., Naes, T., Multivariate strategies for classification based on NIR-spectra-with application to mayonnaise (1999) Chemometrics and Intelligent Laboratory Systems, 49 (1), pp. 19-31. , DOI 10.1016/S0169-7439(99)00023-4, PII S0169743999000234 Jayas, D.S., Paliwal, J., Visen, N.S., Multi-layer neural networks for image analysis of agricultural products (2000) J. Agr. Eng. Res., 77, pp. 119-128 Jansson, P.A., Neural networks: An overview (1991) Anal. Chem., 63, pp. 357-362 Katz, W.T., Snell, J.W., Merickel, M.B., Artificial neural networks (1992) Method Enzymol., 210, pp. 610-636 Khataee, A.R., Kasiri, M.B., Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis (2010) J. Mol. Catal. A: Chem., 331, pp. 86-100 Kruzlicova, D., Mocak, J., Balla, B., Petka, J., Farkova, M., Havel, J., Classification of Slovak white wines using artificial neural networks and discriminant techniques (2009) Food Chem., 112, pp. 1046-1052 Lange, J., Wittmann, C., Enzyme sensor array for the determination of biogenic amines in food samples (2002) Analytical and Bioanalytical Chemistry, 372 (2), pp. 276-283. , DOI 10.1007/s00216-001-1130-9 Lefebvre, J., Finished product formulation (1983) J. Am. Oil Chem., 60, pp. 295-300 Lemes, M.R., Junior, A.D.P., A tabela periódica dos elementos químicos prevista por redes neurais artificiais de kohonen (2008) Quim. Nova, 31, pp. 1141-1144 Lichan, E., Developments in the detection of adulteration of olive oil (1994) Trends Food Sci. Tech., 5, pp. 3-11 Lipp, M., Determination of the adulteration of butter fat by its triglyceride composition obtained by GC. A comparison of the suitability of PLS and neural networks (1996) Food Chemistry, 55 (4), pp. 389-395. , DOI 10.1016/0308-8146(95)00162-X Liu, X.Q., Tan, J.L., Acoustic wave analysis for food crispness evaluation (1999) J. Text. Stud., 30, pp. 397-408 Lou, W., Nakai, S., Artificial neural network-based predictive model for bacterial growth in a simulated medium of modified-atmosphere-packed cooked meat products (2001) Journal of Agricultural and Food Chemistry, 49 (4), pp. 1799-1804. , DOI 10.1021/jf000650m Marini, F., Artificial neural networks in foodstuff analyses: Trends and perspectives-A review (2009) Anal. Chim. Acta, 635, pp. 121-131 Márquez, A.J., Herrera, M.P.A., Ojeda, U.M., Maza, G.B., Neural network as tool for virgin olive oil elaboration process optimization (2009) J. Food Eng., 95, pp. 135-141 Martin, Y.G., Pavon, J.L.P., Cordero, B.M., Classification of vegetable oils by linear discriminant analysis of Electronic Nose data (1999) Anal. Chim. Acta, 384, pp. 83-94 Mattioni, B., (2010) Aplicação de Redes Neurais Na Formulação de Gorduras Para Massa Folhada Baseada em Gorduras Interesterificadas de Soja e Algodão, , University of Santa Catarina. Florianópolis, Brazil McCulloch, W.S., Pitts, W., A logical calculus of the ideas immanent in nervous activity (1943) Bull Math Biophysics, 5, pp. 115-133 Meisel, H., Lorenzen, P.Chr., Martin, D., Schlimme, E., Chemometric identification of butter types by analysis of compositional parameters with neural networks (1997) Nahrung - Food, 41 (2), pp. 75-80 Mutlu, A.C., Boyaci, I.H., Genis, H.E., Ozturk, R., Basaran-Akgul, N., Sanal, T., Evlice, A.K., Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks (2011) Eur. Food Res. Technol., 233, pp. 267-274 Ni, H.X., Gunasekaran, S., Food quality prediction with neural networks (1998) Food Technol., 52, pp. 60-65 Nitatori, C.Y., Gandra, K.M., Garcia, R.K.A., Barrera-Arellano, D., Construção e treinamento de uma rede neural para formulação de gorduras especiais a partir de gorduras interesterificadas, óleos de soja e palma (2010) XVII Congresso de Iniciação Científica da Unicamp, , Campinas, Brazil O'brien, R.D., (2004) Fats and Oils -Formulating and Processing for Applications, , CRC Press, New York Poulton, M.M., Neural networks as an intelligence amplification tool: A review of applications (2002) Geophysics, 67 (3), pp. 979-993 Przybylski, R., Zambiazi, R., Predicting oxidative stability of vegetable oils using neural network system and endogenous oil components (2000) J. Am. Oil Chem. Soc., 77, pp. 925-931 Ramli, N., Said, M., Loon, N.T., Physicochemical characteristics of binary mixtures of hydrogenated palm kernel oil and goat milk fat (2005) Journal of Food Lipids, 12 (3), pp. 243-260. , DOI 10.1111/j.1745-4522.2005.00021.x Ribeiro, A.P.B., Masuchi, M.H., Grimaldi, R., Gonçalves, L.A.G., Interesterificação química de óleo de soja e óleo de soja totalmente hidrogenado: influência do tempo de reação (2009) Quim Nova, 32, pp. 939-945 Romero, R.A.F., Lanças, F.M., Guizo, S.J., Berton, S.R., Classification of edible oils using neural networks (1991) Proceedings/Anais of International Meeting on Fats and Oils Technology-Symposium and Exhibition, pp. 9-11. , Campinas, Brazil Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning internal representations by error propagation (1986) Parallel Distribuited Processing: Explorations in the Microstruture of Cognition, pp. 318-362. , Rumelhart DE, McClelland JL (ed) MIT Press, Cambridge Scaranto, B.A.A., (2010) Aplicação de Redes Neurais Na Formulação de Gorduras Para Bolo Baseada em Gorduras Interesterificadas de Soja e Algodão, , University of Santa Catarina, Florianópolis, Brazil Smallwood, N.J., Using computers for oil blending (1989) J. Am. Oil Chem. Soc., 66, pp. 644-648 Sofu, A., Ekinci, F.Y., Estimation of storage time of yogurt with artificial neural network modeling (2007) Journal of Dairy Science, 90 (7), pp. 3118-3125. , DOI 10.3168/jds.2006-591 Sorsa Timo, Koivo Heikki, N., Koivisto Hannu, Neural networks in process fault diagnosis (1991) IEEE Transactions on Systems, Man and Cybernetics, 21 (4), pp. 815-825. , DOI 10.1109/21.108299 Sousa, E.A., Teixeira, L.C.V., Mello, M.R.P.A., Torres, E.A.F.S., Neto, J.M.M., Aplicação de redes neurais para avaliação do teor de carne mecanicamente separada em salsicha de frango (2003) Ciênc. e Tecnol. de Alim., 23, pp. 307-311 Stauffer, C.E., Uso de las grasas y los aceites en productos de panadería y confíteria (2006) Grasas Aceites, 3, pp. 420-432 Timms, R.E., Physical properties of oils and mixture (1985) J. Am. Oil Chem. Soc., 62, pp. 241-248 Widrow, B., Lehr, M., 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation (1990) Proceedings of IEEE, 78, pp. 1415-1442 Vafaei, M.T., Eslamloueyan, R., Ayatollahi, S.H., Simulation of steam distillation process using neural networks (2009) Chem. Eng. Res. Des., 87, pp. 997-1002 Vieira, W.G., Vml, S., Carvalho, F.R., Jafr, P., Amf, F., Identification and predictive control of a FCC unit using a MIMO neural model (2005) Chem. Eng. Process, 44, pp. 855-868 Yuan, J.Q., Vanrolleghem, P.A., Rolling learning-prediction of product formation in bioprocesses (1999) Journal of Biotechnology, 69 (1), pp. 47-62. , DOI 10.1016/S0168-1656(99)00002-4, PII S0168165699000024 Zafra, A., Automation and refining (1993) Inform, 4, p. 166 Zhang, Q., Reid, J.F., Litchfield, J.B., Ren, J., Chang, S.-W., A prototype neural network supervised control system for Bacillus thuringiensis fermentations (1994) Biotechnology and Bioengineering, 43 (6), pp. 483-489