dc.creatorMaciel B.C.M.
dc.creatorBarbosa H.S.
dc.creatorPessoa G.S.
dc.creatorSalazar M.M.
dc.creatorPereira G.A.G.
dc.creatorGoncalves D.C.
dc.creatorRamos C.H.I.
dc.creatorArruda M.A.Z.
dc.date2014
dc.date2015-06-25T17:53:38Z
dc.date2015-11-26T14:25:38Z
dc.date2015-06-25T17:53:38Z
dc.date2015-11-26T14:25:38Z
dc.date.accessioned2018-03-28T21:28:15Z
dc.date.available2018-03-28T21:28:15Z
dc.identifier
dc.identifierProteomics. Wiley-vch Verlag, v. 14, n. 07/08/15, p. 904 - 912, 2014.
dc.identifier16159853
dc.identifier10.1002/pmic.201300427
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84897378696&partnerID=40&md5=77a9b1a44a65ace145f5946145106eed
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86502
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86502
dc.identifier2-s2.0-84897378696
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1245797
dc.descriptionThe main goal of this work is to evaluate some differential protein species in transgenic (T) and nontransgenic (NT) Arabidopsis thaliana plants after their cultivation in the presence or absence of sodium selenite. The transgenic line was obtained through insertion of CaMV 35S controlling nptII gene. Comparative proteomics through 2D-DIGE is carried out in four different groups (NT × T; NT × Se-NT (where Se is selenium); Se-NT × Se-T, and T × Se-T). Although no differential proteins are achieved in the T × Se-T group, for the others, 68 differential proteins (by applying a regulation factor ≥1.5) are achieved, and 27 of them accurately characterized by ESI-MS/MS. These proteins are classified into metabolism, energy, signal transduction, disease/defense categories, and some of them are involved in the glycolysis pathway-Photosystems I and II and ROS combat. Additionally, laser ablation imaging is used for evaluating the Se and sulfur distribution in leaves of different groups, corroborating some results obtained and related to proteins involved in the glycolysis pathway. From these results, it is possible to conclude that the genetic modification also confers to the plant resistance to oxidative stress. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.description14
dc.description07/08/15
dc.description904
dc.description912
dc.descriptionGilbert, N., A hard look at GM crops (2013) Nature, 497, pp. 21-23
dc.descriptionYe, X., Al-Babili, S., Klöti, A., Zhang, J., Engineering the provitamin A (β-carotene) biosynthetic pathway into carotenoid-free rice endosperm (2000) Science, 287, pp. 303-305
dc.descriptionPaine, J.A., Shipton, C.A., Chaggar, S., Howells, R., Improving the nutritional value of Golden Rice through increased pro-vitamin A content (2005) Nat. Biothechnol., 23, pp. 482-487
dc.descriptionFujisawa, M., Takita, E., Harada, H., Sakurai, N., Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation (2009) J. Exp. Bot., 60, pp. 1319-1332
dc.descriptionQi, B., Fraser, T., Mugford, S., Dobson, G., Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants (2004) Nat. Biotechnol., 22, pp. 739-745
dc.descriptionKarunanandaa, B., Qi, Q., Hao, M., Baszis, S.R., Metabolically engineered oilseed crops with enhanced seed tocopherol (2005) Meta Eng, 7, pp. 384-400
dc.descriptionMataveli, L.V.R., Fioramonte, M., Gozzo, F.C., Arruda, M.A.Z., Improving metallomics information related to transgenic and non-transgenic soybean seeds using 2D-HPLC-ICP-MS and ESI-MS/MS (2012) Metallomics, 4, pp. 373-378
dc.descriptionBarbosa, H.S., Arruda, S.C.C., Azevedo, R.A., Arruda, M.A.Z., New insights on proteomics of transgenic soybean seeds: evaluation of differential expressions of enzymes and proteins (2012) Anal. Bioanal. Chem., 402, pp. 299-314
dc.descriptionArruda, S.C.C., Barbosa, H.S., Azevedo, R.A., Arruda, M.A.Z., Comparative studies focusing on transgenic through cp4EPSPS gene and non-transgenic soybean plants: an analysis of protein species and enzymes (2013) J. Proteomics, 93, pp. 107-116
dc.descriptionGonçalves, D.C., (2012), Universidade Estadual de Campinas, Unicamp. Campinas, BrazilUnseld, M., Marienfeld, J., Brandt, P., Brennicke, A., The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides (1997) Nat. Genet., 15, pp. 57-61
dc.descriptionMeinke, D., Cherry, J., Dean, C., Rounsley, S., Koornneef, M., Arabidopsis thaliana: a model plant for genome analysis (1998) Science, 28, pp. 662-682
dc.descriptionInitiative, T.A.G., Analysis of the genome sequence of the flowering plant Arabidopsis thaliana (2000) Nature, 408, pp. 796-815
dc.descriptionFilkowski, J., Besplug, J., Burke, P., Kovalchuk, I., Kovalchuck, O., Genotoxicity of 2,4-D and dicamba revealed by transgenic Arabidopsis thaliana plants harboring recombination and point mutation markers (2003) Mutat. Res., 542, pp. 23-32
dc.descriptionLin, Y., Ludlow, E., Kalla, R., Pallaghy, C., Organ-specific, developmentally-regulated and abiotic stress-induced activities of four Arabidopsis thaliana promoters in transgenic while clover (Trifolium repens L.) (2003) Plant Sci, 165, pp. 1437-1444
dc.descriptionZupan, J.R., Zambryski, P., Transfer of T-DNA from Agrobacterium to the plant cell (1995) Plant Physiol., 107, pp. 1041-1047
dc.descriptionValvekens, D., Van Montagu, M., Van Lijsebettens, M., Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection (1988) Botany, 85, pp. 5536-5540
dc.descriptionWilkinson, J.E., Twell, D., Lindsey, K., Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plants (1997) J. Exp. Bot., 48, pp. 265-275
dc.descriptionSilva, M.A.O., Arruda, M.A.Z., Laser ablation (imaging) for mapping and determining Se and S in sunflower leaves (2013) Metallomics, 5, pp. 62-67
dc.descriptionBechtold, N., Ellis, J., Pelletier, G., In plant Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants (1993) C. R. Acad. Sci., 316, pp. 1194-1199
dc.descriptionClough, S.J., Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana (1998) Plant J., 16, pp. 735-743
dc.descriptionBorges, J.C., Peroto, M.C., Ramos, C.H.I., Molecular chaperone genes in the SugarCane Expressed Sequence Database (SUCEST) (2001) Gen. Mol. Biol., 24, pp. 85-92
dc.descriptionBorges, J.C., Cagliari, T.C., Ramos, C.H.I., Expression and variability of molecular chaperones in the sugarcane expressome (2007) J. Plant Physiol., 164, pp. 505-513
dc.descriptionda Silva, V.C.H., Cagliari, T.C., Lima, T.B., Gozzo, F.C., Ramos, C.H.I., Conformational and functional studies of a cytosolic 90 kDa heat shock protein Hsp90 from sugarcane (2013) Plant Physiol. Biochem., 68, pp. 16-22
dc.descriptionKoncz, C., Shell, J., The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector (1986) Mol. Gen. Genet., 204, pp. 383-396
dc.descriptionSilva, M.A.O., Garcia, J.S., Souza, G.H.M.F., Eberlin, M.N., Evaluation of sample preparation protocols for proteomic analysis of sunflower leaves (2010) Talanta, 80, pp. 1545-1551
dc.descriptionLin, S.-T., Chou, H.-C., Chang, S.-J., Chen, Y.-W., Proteomic analysis of proteins responsible for the development of doxorubicin resistance in human uterine cancer (2012) J. Proteomics, 75, pp. 5822-5847
dc.descriptionTaiz, L., Zeiger, E., (2006) Plant Physiology, pp. 148-287. , 4th ed., Artmed Ltd., MA, USA
dc.descriptionXiong, L., Schumaker, K.S., Zhu, J.K., Cell signaling during cold, drought and salt stress (2002) The Plant Cell, 14, pp. S165-S183
dc.descriptionIde, Y., Nagasaki, N., Tomioka, R., Suito, M., Molecular properties of a novel, hydrophilic cation-binding protein associated with the plasma membrane (2007) J. Exp. Botany, 58, pp. 1173-1183
dc.descriptionKato, M., Nagasaki-Takeuchi, N., Ide, Y., Tomioka, R., Maeshima, M., PCaPs, possible regulators of PtdInsP signals on plasma membrane (2010) Plant Sign. Beh., 5, pp. 848-850
dc.descriptionLi, J., Wang, X., Qin, T., Zhang, Y., MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis (2011) The Plant Cell, 23, pp. 4411-4427
dc.descriptionWu, B., Chen, Y., Becker, J.S., Study of essential element accumulation in the leaves of a Cu-tolerant plant Elsholtzia splendens after Cu treatment by imaging laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) (2009) Anal. Chim. Acta, 633, pp. 165-172
dc.descriptionSors, T.G., Ellis, D.R., Salt, D.E., Selenium uptake, translocation, assimilation and metabolic fate in plants (2005) Photosynth. Res., 86, pp. 373-389
dc.languageen
dc.publisherWiley-VCH Verlag
dc.relationProteomics
dc.rightsfechado
dc.sourceScopus
dc.titleComparative Proteomics And Metallomics Studies In Arabidopsis Thaliana Leaf Tissues: Evaluation Of The Selenium Addition In Transgenic And Nontransgenic Plants Using Two-dimensional Difference Gel Electrophoresis And Laser Ablation Imaging
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución