dc.creatorFarias A.S.
dc.creatorPradella F.
dc.creatorSchmitt A.
dc.creatorSantos L.M.B.
dc.creatorMartins-de-Souza D.
dc.date2014
dc.date2015-06-25T17:53:38Z
dc.date2015-11-26T14:25:35Z
dc.date2015-06-25T17:53:38Z
dc.date2015-11-26T14:25:35Z
dc.date.accessioned2018-03-28T21:28:10Z
dc.date.available2018-03-28T21:28:10Z
dc.identifier
dc.identifierProteomics. , v. 14, n. 04/05/15, p. 467 - 480, 2014.
dc.identifier16159853
dc.identifier10.1002/pmic.201300268
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84896693634&partnerID=40&md5=846c66bf1d54956171cc00fa1fa74ed1
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86501
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86501
dc.identifier2-s2.0-84896693634
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1245774
dc.descriptionMultiple sclerosis, which is the most common cause of chronic neurological disability in young adults, is an inflammatory, demyelinating, and neurodegenerative disease of the CNS, which leads to the formation of multiple foci of demyelinated lesions in the white matter. The diagnosis is based currently on magnetic resonance image and evidence of dissemination in time and space. However, this could be facilitated if biomarkers were available to rule out other disorders with similar symptoms as well as to avoid cerebrospinal fluid analysis, which requires an invasive collection. Additionally, the molecular mechanisms of the disease are not completely elucidated, especially those related to the neurodegenerative aspects of the disease. The identification of biomarker candidates and molecular mechanisms of multiple sclerosis may be approached by proteomics. In the last 10 years, proteomic techniques have been applied in different biological samples (CNS tissue, cerebrospinal fluid, and blood) from multiple sclerosis patients and in its experimental model. In this review, we summarize these data, presenting their value to the current knowledge of the disease mechanisms, as well as their importance in identifying biomarkers or treatment targets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.description14
dc.description04/05/15
dc.description467
dc.description480
dc.descriptionHauser, S.L., Oksenberg, J.R., The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration (2006) Neuron, 52, pp. 61-76
dc.descriptionHafler, D.A., Slavik, J.M., Anderson, D.E., O'Connor, K.C., Multiple sclerosis (2005) Immunol. Rev., 204, pp. 208-231
dc.descriptionLassmann, H., Multiple sclerosis: is there neurodegeneration independent from inflammation (2007) J. Neurol. Sci., 259, pp. 3-6
dc.descriptionKieseier, B.C., Wiendl, H., Leussink, V.I., Stuve, O., Immunomodulatory treatment strategies in multiple sclerosis (2008) J. Neurol., 255, pp. 15-21
dc.descriptionNylander, A., Hafler, D.A., Multiple sclerosis (2012) J. Clin. Invest., 122, pp. 1180-1188
dc.descriptionLassmann, H., van Horssen, J., Mahad, D., Progressive multiple sclerosis: pathology and pathogenesis (2012) Nat. Rev. Neurol., 8, pp. 647-656
dc.descriptionSadovnick, A.D., Dyment, D.A., Ebers, G.C., Risch, N.J., Evidence for genetic basis of multiple sclerosis (1996) Lancet, 347, pp. 1728-1730
dc.descriptionDyment, D.A., Ebers, G.C., Sadovnick, A.D., Genetics of multiple sclerosis (2004) Lancet Neurol., 3, pp. 104-110
dc.descriptionMunger, K.L., Zhang, S.M., O'Reilly, E., Hernan, M.A., Vitamin D intake and incidence of multiple sclerosis (2004) Neurology, 62, pp. 60-65
dc.descriptionRamagopalan, S.V., Anderson, C., Sadovnick, A.D., Ebers, G.C., Genomewide study of multiple sclerosis (2007) N. Engl. J. Med., 357, pp. 2199-2200
dc.descriptionApperson, M.L., Tian, Y., Stamova, B., Ander, B.P., Genome wide differences of gene expression associated with HLA-DRB1 genotype in multiple sclerosis: a pilot study (2013) J. Neuroimmunol., 257, pp. 90-96
dc.descriptionHaines, J.L., Ter-Minassian, M., Bazyk, A., Gusella, J.F., A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group (1996) Nat. Genet., 13, pp. 469-471
dc.descriptionGenome-wide association study of severity in multiple sclerosis (2011) Genes Immun., 12, pp. 615-625. , International Multiple Sclerosis Genetics Consortium
dc.description(2013) Am. J. Hum. Genet., 92, pp. 854-865. , International Multiple Sclerosis Genetics Consortium, Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls
dc.descriptionPatsopoulos, N.A., Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci (2011) Ann. Neurol., 70, pp. 897-912. , Bayer Pharma MS Genetics Working Group, Steering Committees of Studies Evaluating IFNβ-1b and a CCR1-Antagonist, ANZgene Consortium
dc.descriptionBaranzini, S.E., Nickles, D., Genetics of multiple sclerosis: swimming in an ocean of data (2012) Curr. Opin. Neurol., 25, pp. 239-245
dc.descriptionNoseworthy, J.H., Bass, B.H., Vandervoort, M.K., Ebers, G.C., The prevalence of primary sjogren's syndrome in a multiple sclerosis population (1989) Ann. Neurol., 25, pp. 95-98
dc.descriptionNielsen, N.M., Westergaard, T., Frisch, M., Rostgaard, K., Type 1 diabetes and multiple sclerosis: a Danish population-based cohort study (2006) Arch. Neurol., 63, pp. 1001-1004
dc.descriptionCompston, A., Coles, A., Multiple sclerosis (2002) Lancet, 359, pp. 1221-1231
dc.descriptionRoosendaal, S., Geurts, J., Vrenken, H., Hulst, H., Regional DTI differences in multiple sclerosis patients (2009) NeuroImage, 44, pp. 1397-1403
dc.descriptionDe Stefano, N., Matthews, P.M., Filippi, M., Agosta, F., Evidence of early cortical atrophy in MS: relevance to white matter changes and disability (2003) Neurology, 60, pp. 1157-1162
dc.descriptionGeurts, J.J.G., Bö, L., Pouwels, P.J.W., Castelijns, J.A., Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology (2005) Am. J. Neuroradiol., 26, pp. 572-577
dc.descriptionPirko, I., Lucchinetti, C.F., Sriram, S., Bakshi, R., Gray matter involvement in multiple sclerosis (2007) Neurology, 68, pp. 634-642
dc.descriptionFisniku, L.K., Chard, D.T., Jackson, J.S., Gray matter atrophy is related to long-term disability in multiple sclerosis (2008) Ann. Neurol., 64, pp. 247-254
dc.descriptionDalton, C.M., Chard, D.T., Davies, G.R., Miszkiel, K.A., Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes (2004) Brain, 127, pp. 1101-1107
dc.descriptionFisher, E., Lee, J.C., Nakamura, K., Rudick, R.A., Gray matter atrophy in multiple sclerosis: a longitudinal study (2008) Ann. Neurol., 64, pp. 255-265
dc.descriptionBrownell, B., Hughes, J.T., The distribution of plaques in the cerebrum in multiple sclerosis (1962) J. Neurol. Neurosurg. Pschiatr., 25, pp. 315-320
dc.descriptionRivers, T.M., Sprunt, D.H., Berry, G.P., Observations on attempts to produce acute disseminated encephalomyelitis in monkeys (1933) J. Exp. Med., 58, pp. 39-53
dc.descriptionBaxter, A.G., The origin and application of experimental autoimmune encephalomyelitis (2007) Nat. Rev. Immunol., 7, pp. 904-912
dc.descriptionFarias, A.S., Talaisys, R.L., Blanco, Y.C., Lopes, S.C.P., Regulatory T cell induction during Plasmodium chabaudi infection modifies the clinical course of experimental autoimmune encephalomyelitis (2011) PLoS ONE, 6, pp. e17849
dc.descriptionFarias, A.S., Spagnol, G.S., Bordeaux-Rego, P., Oliveira, C.O.F., Vitamin D3 inducesIDO(+) tolerogenic DCs and enhances Treg, reducing the severity of EAE (2013) CNS Neurosci. Ther., 19, pp. 269-277
dc.descriptionFlugel, A., Willem, M., Berkowicz, T., Wekerle, H., Gene transfer into CD4+ T lymphocytes: green fluorescent protein-engineered, encephalitogenic T cells illuminate brain autoimmune responses (1999) Nat. Med., 5, pp. 843-847
dc.descriptionKuchroo, V.K., Martin, C.A., Greer, J.M., Ju, S.T., Cytokines and adhesion molecules contribute to the ability of myelin proteolipid protein-specific T cell clones to mediate experimental allergic encephalomyelitis (1993) J. Immunol., 151, pp. 4371-4382
dc.descriptionSteinman, L., A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage (2007) Nat. Med., 13, pp. 139-145
dc.descriptionO'Connor, R.A., Prendergast, C.T., Sabatos, C.A., Lau, C.W.Z., Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis (2008) J. Immunol., 181, pp. 3750-3754
dc.descriptionBartholomäus, I., Kawakami, N., Odoardi, F., Schläger, C., Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions (2009) Nature, 462, pp. 94-98
dc.descriptionPradella, F., Moraes, A.S., Santos, M.P.A., Depaula, R.F.O., Granulocyte colony-stimulating factor treatment enhances Foxp3(+) T lymphocytes and modifies the proinflammatory response in experimental autoimmune neuritis (2013) CNS Neurosci. Ther., 19, pp. 529-532
dc.descriptionEmamaullee, J.A., Davis, J., Merani, S., Toso, C., Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice (2009) Diabetes, 58, pp. 1302-1311
dc.descriptionKorn, T., Bettelli, E., Oukka, M., Kuchroo, V.K., IL-17 and Th17 Cells (2009) Annu. Rev. Immunol., 27, pp. 485-517
dc.descriptionFlugel, A., Berkowicz, T., Ritter, T., Labeur, M., Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis (2001) Immunity, 14, pp. 547-560
dc.descriptionKang, Z., Liu, L., Spangler, R., Spear, C., IL-17-induced Act1-mediated signaling is critical for cuprizone-induced demyelination (2012) J. Neurosci., 32, pp. 8284-8292
dc.descriptionFarias, A.S., de La Hoz, C., Castro, F.R., Oliveira, E.C., Nitric oxide and TNFalpha effects in experimental autoimmune encephalomyelitis demyelination (2007) Neuroimmunomodulat., 14, pp. 32-38
dc.descriptionGoverman, J., Autoimmune T cell responses in the central nervous system (2009) Nat. Rev. Immunol., 9, pp. 393-407
dc.descriptionPlant, S.R., Iocca, H.A., Wang, Y., Thrash, J.C., Lymphotoxin β receptor (LtβR): dual roles in demyelination and remyelination and successful therapeutic intervention using LtβR-Ig protein (2007) J. Neurosci., 27, pp. 7429-7437
dc.descriptionFabis, M.J., Scott, G.S., Kean, R.B., Koprowski, H., Hooper, D.C., Loss of blood-brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 5656-5661
dc.descriptionBettini, M., Vignali, D.A., Regulatory T cells and inhibitory cytokines in autoimmunity (2009) Curr. Opin. Immunol., 21, pp. 612-618
dc.descriptionWing, K., Sakaguchi, S., Regulatory T cells exert checks and balances on self tolerance and autoimmunity (2010) Nat. Immunol., 11, pp. 7-13
dc.descriptionSakaguchi, S., Yamaguchi, T., Nomura, T., Ono, M., Regulatory T cells and immune tolerance (2008) Cell, 133, pp. 775-787
dc.descriptionHori, S., Nomura, T., Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3 (2003) Science, 299, pp. 1057-1061
dc.descriptionKitani, A., Chua, K., Nakamura, K., Strober, W., Activated self-MHC-reactive T cells have the cytokine phenotype of Th3/T regulatory cell 1 T cells (2000) J. Immunol., 165, pp. 691-702
dc.descriptionCarrier, Y., Yuan, J., Kuchroo, V.K., Weiner, H.L., Th3 cells in peripheral tolerance. II. TGF-beta-transgenic Th3 cells rescue IL-2-deficient mice from autoimmunity (2007) J. Immunol., 178, pp. 172-178
dc.descriptionJaros, J.A., Guest, P.C., Bahn, S., Martins-de-Souza, D., Affinity depletion of plasma and serum for mass spectrometry-based proteome analysis (2013) Methods Mol. Biol., 1002, pp. 1-11
dc.descriptionKoutroukides, T.A., Guest, P.C., Leweke, F.M., Bailey, D.M.D., Characterization of the human serum depletome by label-free shotgun proteomics (2011) J. Sep. Science, 34, pp. 1621-1626
dc.descriptionDagley, L.F., Emili, A., Purcell, A.W., Application of quantitative proteomics technologies to the biomarker discovery pipeline for multiple sclerosis (2013) Prot. Clin. Appl., 7, pp. 91-108
dc.descriptionNilsson, C., Lindvall-Axelsson, M., Owman, C., Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system (1992) Brain Res. Brain Res. Rev., 17, pp. 109-138
dc.descriptionPolman, C.H., Reingold, S.C., Banwell, B., Wu, Q., Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria (2011) Ann. Neurol., 69, pp. 292-302
dc.descriptionHsueh, C.J., Kao, H.W., Chen, S.Y., Lo, C.P., Comparison of the 2010 and 2005 versions of the McDonald MRI criteria for dissemination-in-time in Taiwanese patients with classic multiple sclerosis (2013) J. Neurol. Sci., 329, pp. 51-54
dc.descriptionLink, H., Huang, Y.M., Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness (2006) J. Neuroimmunol., 180, pp. 17-28
dc.descriptionSartori, S., Priante, E., Pettenazzo, A., Marson, P., Intrathecal synthesis of oligoclonal bands in rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation syndrome: new evidence supporting immunological pathogenesis (2013) J. Child Neurol., , DOI 10.1177/0883073812469050
dc.descriptionTicozzi, N., Tiloca, C., Mencacci, N.E., Morelli, C., Oligoclonal bands in the cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated mutations (2013) J. Neurol., 260, pp. 85-92
dc.descriptionHaghighi, S., Andersen, O., Nilsson, S., Rydberg, L., Wahlström, J., A linkage study in two families with multiple sclerosis and healthy members with oligoclonal CSF immunopathy (2006) Mult. Scler., 12, pp. 723-730
dc.descriptionvon Glehn, F., Farias, A.S., de Oliveira, A.C.P., Damasceno, A., Disappearance of cerebrospinal fluid oligoclonal bands after natalizumab treatment of multiple sclerosis patients (2012) Mult. Scler., 18, pp. 1038-1041
dc.descriptionArchelos, J.J., Hartung, H.P., Pathogenetic role of autoantibodies in neurological diseases (2000) Trends Neurosci., 23, pp. 317-327
dc.descriptionHaase, C.G., Schmidt, S., Detection of brain-specific autoantibodies to myelin oligodendrocyte glycoprotein, S100β and myelin basic protein in patients with Devic's neuromyelitis optica (2001) Neurosci. lett., 307, pp. 131-133
dc.descriptionOliveira, E.C., Fujisawa, M.A.R.M., Hallal Longo, D.E.M., Farias, A.S., Neuropathy of gastrointestinal chagas' disease: immune response to myelin antigens (2009) Neuroimmunomodulation, 16, pp. 54-62
dc.descriptionMartins-de-Souza, D., Guest, P.C., Vanattou-Saifoudine, N., Harris, L.W., Bahn, S., Proteomic technologies for biomarker studies in psychiatry: advances and needs (2011) Int. Rev. Neurobiol., 101, pp. 65-94
dc.descriptionBrewis, I.A., Brennan, P., Proteomics technologies for the global identification of proteins (2010) Adv. Protein. Chem. Struct. Biol., 80, pp. 1-44
dc.descriptionAnderson, N.L., Anderson, N.G., The Human plasma proteome: history, character, and diagnostic prospects (2002) Mol. Cell. Proteomics, 1, pp. 845-867
dc.descriptionColten, H.R., Rosen, F.S., Complement deficiencies (1992) Annu. Rev. Immunol., 10, pp. 809-834
dc.descriptionRicciotti, E., FitzGerald, G.A., Prostaglandins and inflammation (2011) Arterioscler. Thromb. Vasc. Biol., 31, pp. 986-1000
dc.descriptionYork, I.A., Rock, K.L., Antigen processing and presentation by the class I major histocompatibility complex 1 (1996) Annu. Rev. Immunol., 14, pp. 369-396
dc.descriptionTumani, H., Hartung, H.P., Hemmer, B., Teunissen, C., Cerebrospinal fluid biomarkers in multiple sclerosis (2009) Neurobiol. Dis., 35, pp. 117-127
dc.descriptionReiber, H., Ungefehr, S., Jacobi, C., The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis (1998) Mult. Scler., 4, pp. 111-117
dc.descriptionAyoglu, B., Haggmark, A., Khademi, M., Olsson, T., Autoantibody profiling in multiple sclerosis using arrays of human protein fragments (2013) Mol. Cell. Proteomics, 12, pp. 2657-2672
dc.descriptionMahley, R.W., Weisgraber, K.H., Huang, Y., Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 5644-5651
dc.descriptionMahley, R.W., Huang, Y., Apolipoprotein e sets the stage: response to injury triggers neuropathology (2012) Neuron, 76, pp. 871-885
dc.descriptionVitek, M.P., Brown, C.M., Colton, C.A., APOE genotype-specific differences in the innate immune response (2009) Neurobiol. Aging, 30, pp. 1350-1360
dc.descriptionLaskowitz, D.T., Lee, D.M., Schmechel, D., Staats, H.F., Altered immune responses in apolipoprotein E-deficient mice (2000) J. Lipid Res., 41, pp. 613-620
dc.descriptionPerretti, M., D'Acquisto, F., Annexin A1 and glucocorticoids as effectors of the resolution of inflammation (2009) Nat. Rev. Immunol., 9, pp. 62-70
dc.descriptionChiara, A.D., Pederzoli-Ribeil, M., Burgel, P.R., Danel, C., Witko-Sarsat, V., Targeting cytosolic proliferating cell nuclear antigen in neutrophil-dominated inflammation (2012) Front. Immunol., 3, p. 311
dc.descriptionFarias, A.S., Martins-de-Souza, D., Guimarães, L., Pradella, F., Proteome analysis of spinal cord during the clinical course of monophasic experimental autoimmune encephalomyelitis (2012) Proteomics, 12, pp. 2656-2662
dc.descriptionNorgren, N., Sundstrom, P., Svenningsson, A., Rosengren, L., Neurofilament and glial fibrillary acidic protein in multiple sclerosis (2004) Neurology, 63, pp. 1586-1590
dc.descriptionSofroniew, M.V., Reactive astrocytes in neural repair and protection (2005) Neuroscientist, 11, pp. 400-407
dc.descriptionCastegna, A., Thongboonkerd, V., Klein, J.B., Proteomic identification of nitrated proteins in Alzheimer's disease brain (2003) J. Neurochem., 27, pp. 630-633
dc.descriptionVosler, P.S., Brennan, C.S., Chen, J., Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration (2008) Mol. Neurobiol., 38, pp. 78-100
dc.descriptionRay, S., Banik, N., Calpain and Its Involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration (2003) Curr. Drug Targets CNS Neurol. Disord., 2, pp. 173-189
dc.descriptionRosenberg, G.A., Matrix metalloproteinases and their multiple roles in neurodegenerative diseases (2009) Lancet Neurol., 8, pp. 205-216
dc.descriptionSrivastava, R., Aslam, M., Kalluri, S.R., Schirmer, L., Potassium channel KIR4.1 as an immune target in multiple sclerosis (2012) N. Engl. J. Med., 367, pp. 115-123
dc.descriptionOliveira, B.M., Schmitt, A., Falkai, P., Daniel Martins-de-Souza. Is clinical proteomics heading towards to "Bench to Bedside?" (2013) Transl. Proteomics, 1, pp. 53-66
dc.descriptionVanheel, A., Daniels, R., Plaisance, S., Baeten, K., Identification of protein networks involved in the disease course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (2012) PLoS One, 7, pp. e35544
dc.descriptionComabella, M., Fernández, M., Martin, R., Rivera-Vallvé, S., Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis (2010) Brain, 133, pp. 1082-1093
dc.descriptionOttervald, J., Franzén, B., Nilsson, K., Andersson, L.I., Multiple sclerosis: Identification and clinical evaluation of novel CSF biomarkers (2010) J. Proteomics, 73, pp. 1117-1132
dc.descriptionStoop, M.P., Dekker, L.J., Titulaer, M.K., Burgers, P.C., Multiple sclerosis-related proteins identified in cerebrospinal fluid by advanced mass spectrometry (2008) Proteomics, 8, pp. 1576-1585
dc.descriptionStoop, M.P., Singh, V., Dekker, L.J., Titulaer, M.K., Proteomics comparison of cerebrospinal fluid of relapsing remitting and primary progressive multiple sclerosis (2010) PLoS One, 5, pp. e12442
dc.descriptionLiu, S., Bai, S., Qin, Z., Yang, Y., Cui, Y., Quantitative proteomic analysis of the cerebrospinal fluid of patients with multiple sclerosis (2009) J. Cell Mol. Med., 13, pp. 1586-1603
dc.descriptionHammack, B.N., Fung, K.Y., Hunsucker, S.W., Duncan, M.W., Proteomic analysis of multiple sclerosis cerebrospinal fluid (2004) Mult. Scler., 10, pp. 245-260
dc.descriptionLinker, R.A., Brechlin, P., Jesse, S., Steinacker, P., Proteome profiling in murine models of multiple sclerosis: identification of stage specific markers and culprits for tissue damage (2009) PLoS One, 4, pp. e7624
dc.descriptionLy, L., Barnett, M.H., Zheng, Y.Z., Gulati, T., Comprehensive tissue processing strategy for quantitative proteomics of formalin-fixed multiple sclerosis lesions (2011) J. Proteome Res., 10, pp. 4855-4868
dc.descriptionRithidech, K.N., Honikel, L., Milazzo, M., Madigan, D., Protein expression profiles in pediatric multiple sclerosis: potential biomarkers (2009) Mult. Scler., 15, pp. 455-464
dc.descriptionNoben, J.P., Dumont, D., Kwasnikowska, N., Verhaert, P., Lumbar cerebrospinal fluid proteome in multiple sclerosis: characterization by ultrafiltration, liquid chromatography, and mass spectrometry (2006) J. Proteome Res., 5, pp. 1647-1657
dc.descriptionRosenling, T., Stoop, M.P., Attali, A., Aken, H.V., Profiling and identification of cerebrospinal fluid proteins in a rat EAE model of multiple sclerosis (2012) J. Proteome Res., 11, pp. 2048-2060
dc.descriptionLiu, T., Donahue, K.C., Hu, J., Kurnellas, M.P., Identification of differentially expressed proteins in experimental autoimmune encephalomyelitis (EAE) by proteomic analysis of the spinal cord (2007) J. Proteome Res., 6, pp. 2565-2575
dc.descriptionDe Masi, R., Vergara, D., Pasca, S., Acierno, R., PBMCs protein expression profile in relapsing IFN-treated multiple sclerosis: a pilot study on relation to clinical findings and brain atrophy (2009) J. Neuroimmunol., 210, pp. 80-86
dc.descriptionKroksveen, A.C., Opsahl, J.A., Aye, T.T., Ulvik, R.J., Berven, F.S., Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics (2011) J. Proteomics, 74, pp. 371-388
dc.descriptionDumont, D., Noben, J.P., Raus, J., Stinissen, P., Robben, J., Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients (2004) Proteomics, 4, pp. 2117-2124
dc.descriptionJastorff, A.M., Haegler, K., Maccarrone, G., Holsboer, F., Regulation of proteins mediating neurodegeneration in experimental autoimmune encephalomyelitis and multiple sclerosis (2009) Prot. Clin. Appl., 3, pp. 1273-1287
dc.descriptionBroadwater, L., Pandit, A., Clements, R., Azzam, S., Analysis of the mitochondrial proteome in multiple sclerosis cortex (2011) Biochim. Biophys. Acta, 1812, pp. 630-641
dc.descriptionAlmeras, L., Lefranc, D., Drobecq, H., de Seze, J., New antigenic candidates in multiple sclerosis: identification by serological proteome analysis (2004) Proteomics, 4, pp. 2184-2194
dc.descriptionJain, M.R., Bian, S., Liu, T., Hu, J., Altered proteolytic events in experimental autoimmune encephalomyelitis discovered by iTRAQ shotgun proteomics analysis of spinal cord (2009) Proteome Sci., 7, pp. 1-10
dc.descriptionFazeli, A.S., Nasrabadi, D., Sanati, M.H., Pouya, A., Proteome analysis of brain in murine experimental autoimmune encephalomyelitis (2010) Proteomics, 10, pp. 2822-2832
dc.descriptionLehmensiek, V., Süssmuth, S.D., Tauscher, G., Brettschneider, J., Cerebrospinal fluid proteome profile in multiple sclerosis (2007) Mult. Scler., 13, pp. 840-849
dc.descriptionFainardi, E., Castellazzi, M., Tamborino, C., Trentini, A., Potential relevance of cerebrospinal fluid and serum levels and intrathecal synthesis of active matrix metalloproteinase-2 (MMP-2) as markers of disease remission in patients with multiple sclerosis (2009) Mult. Scler., 15, pp. 547-554
dc.descriptionLiu, J., Yin, L., Dong, H., Xu, E., Decreased serum levels of nucleolin protein fragment, as analyzed by bead-based proteomic technology, in multiple sclerosis patients compared to controls (2012) J. Neuroimmunol., 250, pp. 71-76
dc.languageen
dc.publisher
dc.relationProteomics
dc.rightsfechado
dc.sourceScopus
dc.titleTen Years Of Proteomics In Multiple Sclerosis
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución