dc.creatorSerrazina S.
dc.creatorSantos C.
dc.creatorMachado H.
dc.creatorPesquita C.
dc.creatorVicentini R.
dc.creatorPais M.S.
dc.creatorSebastiana M.
dc.creatorCosta R.
dc.date2014
dc.date2015-06-25T17:53:36Z
dc.date2015-11-26T14:25:28Z
dc.date2015-06-25T17:53:36Z
dc.date2015-11-26T14:25:28Z
dc.date.accessioned2018-03-28T21:27:59Z
dc.date.available2018-03-28T21:27:59Z
dc.identifier
dc.identifierTree Genetics And Genomes. Springer Verlag, v. 11, n. 1, p. 1 - 19, 2014.
dc.identifier16142942
dc.identifier10.1007/s11295-014-0829-7
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84921420915&partnerID=40&md5=f75db7527c5509b88274e0a50ff0975c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86496
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86496
dc.identifier2-s2.0-84921420915
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1245730
dc.descriptionThe European chestnut, an important forest species for the economy of Southern Europe, covers an area of 2.53 million hectares, including 75,000 ha devoted to fruit production. Castanea sativa is declining due to ink disease caused by Phytophthora cinnamomi. To elucidate chestnut defense mechanisms to ink disease, we compared the root transcriptome of the susceptible species C. sativa and the resistant species C. crenata after P. cinnamomi inoculation. Four cDNA libraries were constructed, two of them included root samples from C. sativa, inoculated and non-inoculated and the other two libraries comprised samples from C. crenata at identical conditions. Pyrosequencing produced 771,030 reads and assembly set up 15,683 contigs for C. sativa and 16,828 for C. crenata. GO annotation revealed terms related to stress as “response to stimulus”, “transcription factor activity” or “signaling” for both transcriptomes. Differential gene expression analysis revealed that C. crenata involved more genes related with biotic stress upon pathogen inoculation than C. sativa. Those genes for both species are involved in regulation of plant immune response and stress adaptation and recovery. Furthermore, it is suggested that both species recognize the pathogen attack; however, the resistant species may involve more genes in the defense response than the susceptible species. RNA-seq enabled the selection of candidate genes for ink disease resistance in Castanea. The present data is a valuable contribution to the available Castanea genomic resources and constitutes the basis for further studies.
dc.description11
dc.description1
dc.description1
dc.description19
dc.descriptionFCT; Fundação para a Ciência e a Tecnologia
dc.descriptionAnagnostakis, S.L., The effect of multiple importations of pests and pathogens on a native tree (2001) Biol Invasions, 3, pp. 245-254
dc.descriptionBarakat, A., DiLoreto, D.S., Zhang, Y., Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection (2009) BMC Plant Biol, 9, p. 51. , PID: 19426529
dc.descriptionBarakat, A., Staton, M., Cheng, C.-H., Chestnut resistance to the blight disease: insights from transcriptome analysis (2012) BMC Plant Biol, 12, p. 38. , COI: 1:CAS:528:DC%2BC38XpsVWguro%3D, PID: 22429310
dc.descriptionBari, R., Jones, J.D.G., Role of plant hormones in plant defence responses (2009) Plant Mol Biol, 69, pp. 473-488. , COI: 1:CAS:528:DC%2BD1MXhvVOisLs%3D, PID: 19083153
dc.descriptionBelchí-Navarro, S., Almagro, L., Sabater-Jara, A.B., Induction of trans-resveratrol and extracellular pathogenesis-related proteins in elicited suspension cultured cells of Vitis vinifera cv Monastrell (2013) J Plant Physiol, 170, pp. 258-264. , PID: 23127362
dc.descriptionBenhamou, N., Mazau, D., Grenier, J., Esquerré-Tugayé, M.-T., Time-course study of the accumulation of hydroxyproline-rich glycoproteins in root cells of susceptible and resistant tomato plants infected by Fusarium oxysporum f. sp. radicis-lycopersici (1991) Planta, 184, pp. 196-208. , COI: 1:CAS:528:DyaK3MXkt1Kis70%3D, PID: 24194071
dc.descriptionBocca, S.N., Kissen, R., Rojas-Beltrán, J.A., Molecular cloning and characterization of the enzyme UDP-glucose: protein transglucosylase from potato (1999) Plant Physiol Biochem, 37, pp. 809-819. , COI: 1:CAS:528:DC%2BD3cXlsFequw%3D%3D, PID: 10580281
dc.descriptionBouché, N., Fromm, H., GABA in plants: just a metabolite? (2004) Trends Plant Sci, 9, pp. 110-115. , PID: 15003233
dc.descriptionBrasier, C.M., Jung, T., Recent developments in Phytophthora diseases of trees and natural ecosystems in Europe. Prog (2006) Res. Phytophthora Dis. For. Trees. Proceedings, 3rd Int. IUFRO Work. Party, pp. 5-16
dc.descriptionBroeckling, C.D., Huhman, D.V., Farag, M.A., Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism (2005) J Exp Bot, 56, pp. 323-336. , COI: 1:CAS:528:DC%2BD2MXkt1WltA%3D%3D, PID: 15596476
dc.descriptionCantu, D., Vicente, A.R., Labavitch, J.M., Strangers in the matrix: plant cell walls and pathogen susceptibility (2008) Trends Plant Sci, 13, pp. 610-617. , COI: 1:CAS:528:DC%2BD1cXhtlartL7J, PID: 18824396
dc.descriptionChen, K., Fan, B., Du, L., Chen, Z., Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis (2004) Plant Mol Biol, 56, pp. 271-283. , COI: 1:CAS:528:DC%2BD2MXhtVeksw%3D%3D, PID: 15604743
dc.descriptionChung, E., Park, J.M., Oh, S.-K., Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses (2004) Planta, 220, pp. 286-295. , COI: 1:CAS:528:DC%2BD2cXhtVensrfI, PID: 15449060
dc.descriptionCoelho, A.C., Horta Jung, M., Ebadzad, G., Cravador, A., Quercus suber–Phytophthora cinnamomi interaction: a hypothetical molecular mechanism model (2011) N Z J For Sci, 41S, pp. S143-S157
dc.descriptionConesa, A., Götz, S., Blast2GO: a comprehensive suite for functional analysis in plant genomics (2008) Int J Plant Genom
dc.descriptionCosta, R., Santos, C., Tavares, F., Mapping and transcriptomic approaches implemented for understanding disease resistance to Phytophthora cinammomi in Castanea sp (2011) BMC Proc, 5, p. O18
dc.descriptionDhondt, S., Geoffroy, P., Stelmach, B.A., Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes (2000) Plant J, 23, pp. 431-440. , COI: 1:CAS:528:DC%2BD3cXms1eht7s%3D, PID: 10972869
dc.descriptionDiévart, A., Clark, S.E., Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases (2003) Curr Opin Plant Biol, 6, pp. 507-516. , PID: 12972053
dc.descriptionDixon, R.A., Paiva, N.L., Stress-induced phenylpropanoid metabolism (1995) Plant Cell, 7, pp. 1085-1097. , COI: 1:CAS:528:DyaK2MXnt1Sgt7k%3D, PID: 12242399
dc.descriptionEshraghi, L., Anderson, J.P., Aryamanesh, N., Defence signalling pathways involved in plant resistance and phosphite-mediated control of Phytophthora cinnamomi (2013) Plant Mol Biol Report, 32, pp. 342-356
dc.descriptionFeng, B., Li, P., Genome-wide identification of laccase gene family in three Phytophthora species (2012) Genetica, 140, pp. 477-484. , COI: 1:CAS:528:DC%2BC3sXitFagtr8%3D, PID: 23283515
dc.descriptionFernandes, C.T., A luta contra a doença da tinta nos soutos do norte de Portugal e ensaios diversos para a sua maior eficiência e economia (1955) Direcção-G, p. 61
dc.descriptionFoster, J., Kim, H.U., Nakata, P.A., Browse, J., A previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis (2012) Plant Cell, 24, pp. 1217-1229. , COI: 1:CAS:528:DC%2BC38Xmsl2jtLg%3D, PID: 22447686
dc.descriptionGarcía-Pineda, E., Benezer-Benezer, M., Gutiérrez-Segundo, A., Regulation of defence responses in avocado roots infected with Phytophthora cinnamomi (Rands) (2009) Plant Soil, 331, pp. 45-56
dc.descriptionGiri, J., Vij, S., Dansana, P.K., Tyagi, A.K., Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants (2011) New Phytol, 191 (3), pp. 721-732
dc.descriptionGouzy, J., Carrere, S., Schiex, T., FrameDP: sensitive peptide detection on noisy matured sequences (2009) Bioinformatics, 25, pp. 670-671. , COI: 1:CAS:528:DC%2BD1MXisFeks7o%3D, PID: 19153134
dc.descriptionHammond-Kosack, K.E., Jones, J.D., Resistance gene-dependent plant defense responses (1996) Plant Cell, 8, pp. 1773-1791. , COI: 1:CAS:528:DyaK28Xmsl2mtbY%3D, PID: 8914325
dc.descriptionHammond-Kosack, K.E., Jones, J.D.G., Plant disease resistance genes (1997) Annu Rev Plant Physiol Plant Mol Biol, 48, pp. 575-607. , COI: 1:CAS:528:DyaK2sXjs1elsr0%3D, PID: 15012275
dc.descriptionHartmann, U., Sagasser, M., Mehrtens, F., Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes (2005) Plant Mol Biol, 57, pp. 155-171. , COI: 1:CAS:528:DC%2BD2MXjtV2hu7Y%3D, PID: 15821875
dc.descriptionHe, X., Miyasaka, S.C., Fitch, M.M.M., Taro (Colocasia esculenta) transformed with a wheat oxalate oxidase gene for improved resistance to taro pathogen Phytophthora colocasiae (2013) HortSci, 48, pp. 22-27. , COI: 1:CAS:528:DC%2BC3sXislyjtbc%3D
dc.descriptionHenriksson, E., Olsson, A.S.B., Johannesson, H., Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships (2005) Plant Physiol, 139, pp. 509-518. , COI: 1:CAS:528:DC%2BD2MXhtVCgurrE, PID: 16055682
dc.descriptionHondo, D., Hase, S., Kanayama, Y., The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato (2007) Mol Plant Microbe Interact, 20, pp. 72-81. , COI: 1:CAS:528:DC%2BD2sXlvFE%3D, PID: 17249424
dc.descriptionHu, X., Neill, S., Cai, W., Tang, Z., Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of Panax ginseng (2003) Physiol Plant, 118, pp. 414-421. , COI: 1:CAS:528:DC%2BD3sXlsVSisLg%3D
dc.descriptionHunter, S., Apweiler, R., Attwood, T.K., InterPro: the integrative protein signature database (2009) Nucleic Acids Res, 37, pp. D211-D215. , COI: 1:CAS:528:DC%2BD1cXhsFejtL%2FF, PID: 18940856
dc.descriptionIrshad, M., Canut, H., Borderies, G., A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers (2008) BMC Plant Biol, 8, p. 94. , PID: 18796151
dc.descriptionJabs, T., Dietrich, R.A., Dangl, J.L., Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide (1996) Science, 273, pp. 1853-1856. , COI: 1:CAS:528:DyaK28XlvFCrsLk%3D, PID: 8791589, 80-
dc.descriptionJackson, D., Culianez-Macia, F., Prescott, A.G., Expression patterns of myb genes from Antirrhinum flowers (1991) Plant Cell, 3, pp. 115-125. , COI: 1:CAS:528:DyaK38Xhs1Cnsg%3D%3D, PID: 1840903
dc.descriptionJacobs, D.F., Dalgleish, H.J., Nelson, C.D., A conceptual framework for restoration of threatened plants: the effective model of American chestnut (Castanea dentata) reintroduction (2013) New Phytol, 197, pp. 378-393. , PID: 23163342
dc.descriptionJiang, N., Xiao, D., Zhang, D., Negative roles of a novel nitrogen metabolite repression-related gene, TAR1, in laccase production and nitrate utilization by the basidiomycete Cryptococcus neoformans (2009) Appl Environ Microbiol, 75, pp. 6777-6782. , COI: 1:CAS:528:DC%2BD1MXhsVGrsrfP, PID: 19734333
dc.descriptionKamoun, S., Huitema, E., Vleeshouwers, V., Resistance to oomycetes: a general role for the hypersensitive response? (1999) Trends Plant Sci, 4, pp. 196-200. , PID: 10322560
dc.descriptionKeinänen, S.I., Hassinen, V.H., Kärenlampi, S.O., Tervahauta, A.I., Isolation of genes up-regulated by copper in a copper-tolerant birch (Betula pendula) clone (2007) Tree Physiol, 27, pp. 1243-1252. , PID: 17545124
dc.descriptionLangmead, B., Hansen, K.D., Leek, J.T., Cloud-scale RNA-sequencing differential expression analysis with Myrna (2010) Genome Biol, 11, p. R83. , PID: 20701754
dc.descriptionLatijnhouwers, M., de Wit, P.J.G.M., Govers, F., Oomycetes and fungi: similar weaponry to attack plants (2003) Trends Microbiol, 11, pp. 462-469. , COI: 1:CAS:528:DC%2BD3sXnvFWjtr8%3D, PID: 14557029
dc.descriptionLe Provost, G., Herrera, R., Paiva, J.A., A micromethod for high throughput RNA extraction in forest trees (2007) Biol Res, 40, pp. 291-297. , PID: 18449457
dc.descriptionLeivar, P., Antolín-Llovera, M., Ferrero, S., Multilevel control of Arabidopsis 3-hydroxy-3-methylglutaryl coenzyme A reductase by protein phosphatase 2A (2011) Plant Cell, 23, pp. 1494-1511. , COI: 1:CAS:528:DC%2BC3MXnsl2lurc%3D, PID: 21478440
dc.descriptionLi, G., Liu, K., Baldwin, S.A., Wang, D., Equilibrative nucleoside transporters of Arabidopsis thaliana. cDNA cloning, expression pattern, and analysis of transport activities (2003) J Biol Chem, 278, pp. 35732-35742. , COI: 1:CAS:528:DC%2BD3sXntVajsbg%3D, PID: 12810710
dc.descriptionLin, R.-C., Park, H.-J., Wang, H.-Y., Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance (2008) Mol Plant, 1 (1), pp. 42-57
dc.descriptionLingard, M.J., Bartel, B., Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import (2009) Plant Physiol, 151, pp. 1354-1365. , COI: 1:CAS:528:DC%2BD1MXhsVCjsbjF, PID: 19748917
dc.descriptionLiu, X., Bush, D.R., Expression and transcriptional regulation of amino acid transporters in plants (2006) Amino Acids, 30, pp. 113-120. , PID: 16525755
dc.descriptionLivak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method (2001) Methods, 25, pp. 402-408. , COI: 1:CAS:528:DC%2BD38XhtFelt7s%3D, PID: 11846609
dc.descriptionLópez-Marqués, R.L., Poulsen, L.R., Palmgren, M.G., A putative plant aminophospholipid flippase, the Arabidopsis P4 ATPase ALA1, localizes to the plasma membrane following association with a β-subunit (2012) PLoS ONE, 7, p. e33042. , PID: 22514601
dc.descriptionLottaz, C., Iseli, C., Jongeneel, C.V., Bucher, P., Modeling sequencing errors by combining Hidden Markov models (2003) Bioinformatics, 19, pp. ii103-ii112. , PID: 14534179
dc.descriptionMarshall, S.D.G., Putterill, J.J., Plummer, K.M., Newcomb, R.D., The carboxylesterase gene family from Arabidopsis thaliana (2003) J Mol Evol, 57, pp. 487-500. , COI: 1:CAS:528:DC%2BD3sXpt1Oltb0%3D, PID: 14738307
dc.descriptionMarsolais, F., Boyd, J., Paredes, Y., Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabidopsis, AtST4a (At2g14920) and AtST1 (At2g03760) (2007) Planta, 225, pp. 1233-1244. , COI: 1:CAS:528:DC%2BD2sXjtVWjs7w%3D, PID: 17039368
dc.descriptionMartins, L., Anjos, R., Costa, R., Gomes-Laranjo, J., Gomes-Laranjo, J., Peixoto, F., Ferreira-Cardoso, J., COLUTAD: um clone de castanheiro resistente à doença da tinta (2009) Castanheiros, Técnicas e Práticas, pp. 135-142. , UTAD - Vil, Vila Real:
dc.descriptionMeyer, F., Paarmann, D., D’Souza, M., The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes (2008) BMC Bioinforma, 9, p. 386. , COI: 1:CAS:528:DC%2BD1cXhtlGjsrbM
dc.descriptionMutuku, J.M., Nose, A., Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway (2012) Plant Cell Physiol, 53, pp. 1017-1032. , COI: 1:CAS:528:DC%2BC38XotlelsL0%3D, PID: 22492233
dc.descriptionNakane, E., Kawakita, K., Doke, N., Yoshioka, H., Elicitation of primary and secondary metabolism during defense in the potato (2003) J Gen Plant Pathol, 69, pp. 378-384. , COI: 1:CAS:528:DC%2BD2cXhvFegtbc%3D
dc.descriptionNdamukong, I., Al Abdallat, A., Thurow, C., SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription (2007) Plant J, 50, pp. 128-139. , COI: 1:CAS:528:DC%2BD2sXkvFSmtrw%3D, PID: 17397508
dc.descriptionNiu, B., Fu, L., Sun, S., Li, W., Artificial and natural duplicates in pyrosequencing reads of metagenomic data (2010) BMC Bioinforma, 11, p. 187
dc.descriptionOhta, M., Matsui, K., Hiratsu, K., Repression domains of class II ERF transcriptional repressors share an essential motif for active repression (2001) Plant Cell, 13, pp. 1959-1968. , COI: 1:CAS:528:DC%2BD3MXmsFKhsrw%3D, PID: 11487705
dc.descriptionOßwald, W., Fleischmann, F., Rigling, D., Strategies of attack and defence in woody plant- Phytophthora interactions. For Pathol 44:n/a–n/a (2014) doi: 10.1111/efp.12096
dc.descriptionPorta, H., Rocha-Sosa, M., Plant lipoxygenases. Physiological and molecular features (2002) Plant Physiol, 130, pp. 15-21. , COI: 1:CAS:528:DC%2BD38XntFOrsL0%3D, PID: 12226483
dc.descriptionReeksting, B.J., Coetzer, N., Mahomed, W., De novo sequencing, assembly, and analysis of the root transcriptome of Persea americana (Mill.) in response to Phytophthora cinnamomi and flooding (2014) PLoS ONE, 9, p. e86399. , PID: 24563685
dc.descriptionReimers, P.J., Guo, A., Leach, J.E., Increased activity of a cationic peroxidase associated with an incompatible interaction between Xanthomonas oryzae pv oryzae and rice (Oryza sativa) (1992) Plant Physiol, 99, pp. 1044-1050. , COI: 1:CAS:528:DyaK38XlsVOgtL8%3D, PID: 16668969
dc.descriptionRookes, J.E., Wright, M.L., Cahill, D.M., Elucidation of defence responses and signalling pathways induced in Arabidopsis thaliana following challenge with Phytophthora cinnamomi (2008) Physiol Mol Plant Pathol, 72, pp. 151-161. , COI: 1:CAS:528:DC%2BD1cXhsVKls7fM
dc.descriptionRoppolo, D., De Rybel, B., Tendon, V.D., A novel protein family mediates Casparian strip formation in the endodermis (2011) Nature, 473, pp. 380-383. , COI: 1:CAS:528:DC%2BC3MXmtlemu78%3D, PID: 21593871
dc.descriptionRyu, H.Y., Kim, S.Y., Park, H.M., Modulations of AtGSTF10 expression induce stress tolerance and BAK1-mediated cell death (2009) Biochem Biophys Res Commun, 379, pp. 417-422. , COI: 1:CAS:528:DC%2BD1MXotl2isw%3D%3D, PID: 19118534
dc.descriptionSandorf, I., Holländer-Czytko, H., Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana (2002) Planta, 216 (1), pp. 173-179
dc.descriptionSchneider, M., Droz, E., Malnoë, P., Transgenic potato plants expressing oxalate oxidase have increased resistance to oomycete and bacterial pathogens (2002) Potato Res, 45, pp. 177-185. , COI: 1:CAS:528:DC%2BD2MXltlWitLc%3D
dc.descriptionSchneider, K., Kienow, L., Schmelzer, E., A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid (2005) J Biol Chem, 280, pp. 13962-13972. , COI: 1:CAS:528:DC%2BD2MXivV2rsrs%3D, PID: 15677481
dc.descriptionSchopfer, C.R., Ebel, J., Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L.) using differential display of mRNA (1998) Mol Gen Genet, 258, pp. 315-322. , COI: 1:CAS:528:DyaK1cXjvF2iu7g%3D, PID: 9648734
dc.descriptionSharma, M., Chai, C., Morohashi, K., Expression of flavonoid 3’-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize (2012) BMC Plant Biol, 12, p. 196. , COI: 1:CAS:528:DC%2BC3sXhtlGitrw%3D, PID: 23113982
dc.descriptionShoji, T., Hashimoto, T., Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes (2011) Plant Cell Physiol, 52, pp. 1117-1130. , COI: 1:CAS:528:DC%2BC3MXnsFWktrw%3D, PID: 21576194
dc.descriptionSingh, A.K., Sharma, V., Pal, A.K., Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.) (2013) DNA Res, 20, pp. 403-423. , COI: 1:CAS:528:DC%2BC3sXht1CktrrN, PID: 23649897
dc.descriptionSivasankar, S., Expression of allene oxide synthase determines defense gene activation in tomato (2000) Plant Physiol, 122, pp. 1335-1342. , COI: 1:CAS:528:DC%2BD3cXktFWjsrw%3D, PID: 10759530
dc.descriptionStorey, J.D., Tibshirani, R., Statistical significance for genomewide studies (2003) Proc Natl Acad Sci U S A, 100, pp. 9440-9445. , COI: 1:CAS:528:DC%2BD3sXmtlyktbY%3D, PID: 12883005
dc.descriptionSubroto, T., de Vries, H., Schuringa, J.J., Enzymic and structural studies on processed proteins from the vacuolar (lutoid-body) fraction of latex of Hevea brasiliensis (2001) Plant Physiol Biochem, 39, pp. 1047-1055. , COI: 1:CAS:528:DC%2BD3MXpt1arurc%3D
dc.descriptionSun, G., Yang, Y., Xie, F., Deep sequencing reveals transcriptome re-programming of Taxus × media cells to the elicitation with methyl jasmonate (2013) PLoS ONE, 8, p. e62865. , COI: 1:CAS:528:DC%2BC3sXnsVKhu7Y%3D, PID: 23646152
dc.descriptionSzczesna-Skorupa, E., Kemper, B., BAP31 is involved in the retention of cytochrome P450 2C2 in the endoplasmic reticulum (2006) J Biol Chem, 281 (7), pp. 4142-4148
dc.descriptionTaki, N., Sasaki-Sekimoto, Y., Obayashi, T., 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis (2005) Plant Physiol, 139, pp. 1268-1283. , COI: 1:CAS:528:DC%2BD2MXht1Ogu7%2FE, PID: 16258017
dc.descriptionTan, S.-K., Kamada, H., Initial identification of a phosphoprotein that appears to be involved in the induction of somatic embryogenesis in carrot (2000) Plant Cell Rep, 19, pp. 739-747. , COI: 1:CAS:528:DC%2BD3cXksFGhsLY%3D
dc.descriptionThomma, B.P.H.J., Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens (1998) Proc Natl Acad Sci, 95, pp. 15107-15111. , COI: 1:CAS:528:DyaK1cXotVGlsLc%3D, PID: 9844023
dc.descriptionTorres, M.A., Dangl, J.L., Jones, J.D.G., Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response (2002) Proc Natl Acad Sci U S A, 99, pp. 517-522. , COI: 1:CAS:528:DC%2BD38Xlt1CqsQ%3D%3D, PID: 11756663
dc.descriptionVannini, A., Vettraino, A.M., Ink disease in chestnuts: impact on the European chestnut (2001) For Snow Landsc Res, 76, pp. 345-350
dc.descriptionVellosillo, T., Martínez, M., López, M.A., Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade (2007) Plant Cell, 19, pp. 831-846. , COI: 1:CAS:528:DC%2BD2sXltFyqurw%3D, PID: 17369372
dc.descriptionVlad, F., Spano, T., Vlad, D., Involvement of Arabidopsis prolyl 4 hydroxylases in hypoxia, anoxia and mechanical wounding (2007) Plant Signal Behav, 2, pp. 368-369. , PID: 19704601
dc.descriptionVleeshouwers, V.G., van Dooijeweert, W., Govers, F., The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans (2000) Planta, 210, pp. 853-864. , COI: 1:CAS:528:DC%2BD3cXjtVWrtrg%3D, PID: 10872215
dc.descriptionWen, B., Ström, A., Tasker, A., Effect of silencing the two major tomato fruit pectin methylesterase isoforms on cell wall pectin metabolism (2013) Plant Biol (Stuttg)
dc.descriptionWoo, H.-H., Jeong, B.R., Hirsch, A.M., Hawes, M.C., Characterization of Arabidopsis AtUGT85A and AtGUS gene families and their expression in rapidly dividing tissues (2007) Genomics, 90, pp. 143-153. , COI: 1:CAS:528:DC%2BD2sXmsFahsb4%3D, PID: 17498920
dc.descriptionYang, B., Jiang, Y., Rahman, M.H., Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments (2009) BMC Plant Biol, 9, p. 68. , PID: 19493335
dc.descriptionYang, Y., He, M., Zhu, Z., Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress (2012) BMC Plant Biol, 12, p. 140. , COI: 1:CAS:528:DC%2BC38Xhslals7zK, PID: 22882870
dc.descriptionYazaki, K., ABC transporters involved in the transport of plant secondary metabolites (2006) FEBS Lett, 580, pp. 1183-1191. , COI: 1:CAS:528:DC%2BD28XhtFejur4%3D, PID: 16364309
dc.descriptionYokoyama, R., Nishitani, K., A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis (2001) Plant Cell Physiol, 42, pp. 1025-1033. , COI: 1:CAS:528:DC%2BD3MXnvV2ksbs%3D, PID: 11673616
dc.descriptionZhang, B., Singh, K.B., ocs element promoter sequences are activated by auxin and salicylic acid in Arabidopsis (1994) Proc Natl Acad Sci U S A, 91, pp. 2507-2511. , COI: 1:CAS:528:DyaK2cXjtFOisL0%3D, PID: 8146146
dc.descriptionZhang, J., Addepalli, B., Yun, K.-Y., A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana (2008) PLoS ONE, 3, p. e2410. , PID: 18545667
dc.descriptionZhang, J., Peng, Y., Guo, Z., Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants (2008) Cell Res, 18, pp. 508-521. , COI: 1:CAS:528:DC%2BD1cXktFCksro%3D, PID: 18071364
dc.descriptionZhang, B., Oakes, A.D., Newhouse, A.E., A threshold level of oxalate oxidase transgene expression reduces Cryphonectria parasitica-induced necrosis in a transgenic American chestnut (Castanea dentata) leaf bioassay (2013) Transgenic Res
dc.descriptionZhu, Z., An, F., Feng, Y., Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis (2011) Proc Natl Acad Sci U S A, 108, pp. 12539-12544. , COI: 1:CAS:528:DC%2BC3MXpvFSjsbc%3D, PID: 21737749
dc.languageen
dc.publisherSpringer Verlag
dc.relationTree Genetics and Genomes
dc.rightsfechado
dc.sourceScopus
dc.titleCastanea Root Transcriptome In Response To Phytophthora Cinnamomi Challenge
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución