Artículos de revistas
Modeling And Characterization Of As-welded Microstructure Of Solid Solution Strengthened Ni-cr-fe Alloys Resistant To Ductility-dip Cracking Part I: Numerical Modeling
Registro en:
Metals And Materials International. Korean Institute Of Metals And Materials, v. 20, n. 2, p. 297 - 305, 2014.
15989623
10.1007/s12540-014-1023-z
2-s2.0-84896905111
Autor
Unfried-Silgado J.
Ramirez A.J.
Institución
Resumen
This work aims the numerical modeling and characterization of as-welded microstructure of Ni-Cr-Fe alloys with additions of Nb, Mo and Hf as a key to understand their proven resistance to ductility-dip cracking. Part I deals with as-welded structure modeling, using experimental alloying ranges and Calphad methodology. Model calculates kinetic phase transformations and partitioning of elements during weld solidification using a cooling rate of 100 K.s -1, considering their consequences on solidification mode for each alloy. Calculated structures were compared with experimental observations on as-welded structures, exhibiting good agreement. Numerical calculations estimate an increase by three times of mass fraction of primary carbides precipitation, a substantial reduction of mass fraction of M23C6 precipitates and topologically closed packed phases (TCP), a homogeneously intradendritic distribution, and a slight increase of interdendritic Molybdenum distribution in these alloys. Incidences of metallurgical characteristics of modeled as-welded structures on desirable characteristics of Ni-based alloys resistant to DDC are discussed here. © 2014 The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht. 20 2 297 305 Arkoosh, M.A., Fiore, N.F., (1972) Metall. Trans., 3, p. 2235. , 10.1007/BF02643237 Yeniscavich, W., (1966) Weld. J., 45, pp. 344s Hemsworth, B., Boniszewski, T., Eaton, N.F., (1969) Met. Constr. Br. Weld. J., 1, p. 5 Rhines, F.N., Wray, P.J., (1961) Trans. ASM., 54, p. 117 Abralov, M.A., Abdurakhmanov, R.U., (1974) Automation Welding, 27, p. 7 Haddrill, D.M., Baker, R.G., (1965) Br. Weld J., 12, p. 411 Ramirez, A.J., Lippold, J.C., (2004) Mater. Sci. Eng. A, 380, p. 259. , 10.1016/j.msea.2004.03.074 Noecker, I.I.F.F., Dupont, J.N., (2009) Weld. J., 88, pp. 7s Young, G.A., Capobianco, T.E., Penik, M.A., Morris, B.W., McGee, J.J., (2008) Weld. J., 87, pp. 31s Collins, M.G., Ramirez, A.J., Lippold, J.C., (2004) Weld. J., 83, pp. 39s Nishimoto, K., Saida, K., Okauchi, H., (2006) Sci. Technol. Weld. Joining, 11, p. 471. , 10.1179/174329306X94318 Nishimoto, K., Saida, K., Okauchi, H., (2006) Sci. Technol. Weld. Joining, 11, p. 462. , 10.1179/174329306X94309 Nippes, E.F., Savage, W.F., Bystram, B.J., (1955) Weld. J., 23, pp. 183s Nissley, N.E., Lippold, J.C., (2008) Weld. J., 87, pp. 257s Chabenat, A., Pierron, D., Thomas, A., Faure, F., Guyon, C., (2004), Appl. No. 10/639,680. United States Patent Pub. No. US 2004/0115086 A1, June 17Kiser, S.D., Zhang, R., Baker, B.A., (2009) Proc. 8th Int. Conf. of Trends in Welding Research, p. 639 Ramirez, A.J., Sowards, J.W., Lippold, J.C., (2006) J. of Mat. Proces. Tech., 179, p. 212. , 10.1016/j.jmatprotec.2006.03.095 Ramirez, A.J., Lippold, J.C., (2004) Mater. Sci. Eng. A, 25, p. 245. , 10.1016/j.msea.2004.03.075 Nissley, N.E., Lippold, J.C., (2009) Weld. J., 88, pp. 131s Torres, E.A., Caram, R., Ramirez, A.J., (2010) Mater. Sci. Forum, 638-642, p. 2858. , 10.4028/www.scientific.net/MSF.638-642.2858 Unfried, J., Ramirez, A.J., (2012) Mater. Sci. Forum, 706-709, p. 945. , 10.4028/www.scientific.net/MSF.706-709.945 Unfried, J., Torres, E.A., Ramirez, A.J., (2011) Hot Cracking Phenomena in Welds III, p. 295. , 1st ed. Springer-Verlag Berlin 10.1007/978-3-642-16864-2-15 Saunders, N., Fahrmann, M., Small, C.J., (2000) Proc. 9th Int. Symp. of Superalloys 2000, pp. 803-811. , 10.7449/2000/Superalloys-2000-803-811 Saunders, N., (1996) Proc. 8th Int. Symp. of Superalloys 1996, p. 115. , PA, USA (eds. R.D.K. Kissinger et al.) Engström, A., Höglund, L., Ågren, J., (1994) Metall. Mat. Trans. A, 25, p. 1127. , 10.1007/BF02652288 Kaufman, L., Nesor, H., (1974) Metall. Mat. Trans. A, 5, p. 1617. , 10.1007/BF02646333 Ramirez, A.J., Garzón, C.M., (2008) Hot Cracking Phenomena in Welds II, p. 427. , 1st ed. Springer-Verlag Berlin 10.1007/978-3-540-78628-3-22 Saunders, N., Li, X., Miodownik, A.P., Schillé, J.-P., (2004) J. Mater. Sci., 39, p. 7237. , 10.1023/B:JMSC.0000048737.32055.7a Hou, Q.Y., He, Y.Z., Zhang, Q.A., Gao, J.S., (2007) Mater. Des., 28, p. 1982. , 10.1016/j.matdes.2006.04.005 Zimina, L.N., Burova, N.N., Makushok, O.V., (1986) Met. Sci. Heat Treat., 28, p. 130. , 10.1007/BF00717535 Dahl, J.M., Danesi, W.F., Dunn, R.G., (1973) Metall. Trans., 4, p. 1087. , 10.1007/BF02645612 Unfried, J., Fonseca, S.E.B., Afonso, C.M.R., Ramirez, A.J., (2010) Mathematical Modelling of Weld Phenomena 9, pp. 983-996 Kraft, T., Exner, H.E., (1998) Mater. Sci. Technol., 14, p. 377. , 10.1179/mst.1998.14.5.377 Raghavan, M., Mueller, R., Vaughn, G.A., Floreen, S., (1984) Metall. Mat. Trans. A., 15, p. 783. , 10.1007/BF02644553 Perricone, M.J., Dupont, J.N., (2006) Metall. Trans. A, 37, p. 1267. , 10.1007/s11661-006-1078-7 (2009) Technical Bulletin of Inconel Alloy 690, , PCC Energy Group Radrakrisnha, C., Prasad-Rao, K., (1997) J. Mater. Sci., 32, p. 1977. , 10.1023/A:1018541915113