Artículos de revistas
Effects Of The Protonation State In The Interaction Of An Hiv-1 Reverse Transcriptase (rt) Amino Acid, Lys101, And A Non Nucleoside Rt Inhibitor, Gw420867x
Registro en:
Journal Of Molecular Modeling. Springer Verlag, v. 20, n. 7, p. - , 2014.
16102940
10.1007/s00894-014-2332-3
2-s2.0-84902938123
Autor
Galembeck S.E.
Bickelhaupt F.M.
Fonseca Guerra C.
Galembeck E.
Institución
Resumen
Interactions between an inhibitor and amino acids from a binding pocket could help not only to understand the nature of these interactions, but also to support the design of new inhibitors. In this paper, we explore the key interaction between a second generation non-nucleoside reverse transcriptase inhibitor (NNRTI), GW420867X, and HIV-1 RT amino acid Lys101 (K101), by quantum mechanical methods. The neutral, protonated, and zwitterionic complexes of GW420867X-K101 were studied. The interaction energies were determined by SCS-MP2/def2-cc-pVQZ, and the electron density was analyzed by natural bond orbital (NBO), atoms in molecules (AIM) and reduced gradient analysis. A large increase in the interaction was observed with the tautomerization of neutral or neutral protonated species. The monomers interact by two medium-strength hydrogen bonds, one partially covalent and another noncovalent. There are some van der Waals intramolecular interactions that are topologically unstable. The nature of the intermolecular interactions was also analyzed using quantitative molecular orbital (MO) theory in combination with an energy decomposition analysis (EDA) based on dispersion-corrected density functional theory (DFT) at BLYP-D/TZ2P. © 2014 Springer-Verlag. 20 7
Sharp, P.M., Hahn, B., Origins of HIV and the AIDS pandemic (2011) Cold Spring Harb Perspect Med, 1, pp. 1-22 Piot, P., Quinn, T.C., Response to the AIDS pandemic - A global health model (2013) N Engl J Med, 368, pp. 2210-2218 De Clercq, E.A., A 40-year journey in search of selective antiviral chemotherapy (2011) Annu Rev Pharmacol Toxicol, 51, pp. 1-27 Panos, G., Samonis, G., Alexiou, V.G., Kavarnou, G.A., Charatsis, G., Falagas, M.E., Mortality and morbidity of HIV infected patients receiving HAART: A cohort study (2008) Current HIV Research, 6 (3), pp. 257-260. , http://www.ingentaconnect.com/content/ben/chr/2008/00000006/00000003/ art00009, DOI 10.2174/157016208784324976 De Bethune, M.-P., Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989-2009) (2010) Antivir Res, 85, pp. 75-90 Joly, V., Descamps, D., Yeni, P., NNRTI plus PI combinations in the perspective of nucleoside-sparing or nucleoside-failing antiretroviral regimens (2002) AIDS Reviews, 4 (3), pp. 128-139 Singh, K., Marchand, B., Rai, D.K., Sharma, B., Michailidis, E., Ryan, E.M., Matzek, K.B., Sarafianos, S.G., Biochemical mechanism of HIV-1 resistance to rilpivirine (2012) J Biol Chem, 287, pp. 38110-38123 Safety. Intelence (Etravirine), , http://www.fda.gov/Safety/MedWatch/SafetyInformation/ SafetyAlertsforHumanMedicalProducts/ucm180579.htm, Accessed 26 January 2014 Approval of Edurant (Rilpivirine) a New NNRTI for the Treatment of HIV in Treatment Naive Patients, , http://www.fda.gov/ForConsumers/ByAudience/ForPatientAdvocates/ HIVandAIDSActivities/ucm256151.htm, Accessed 26 January 2014 Delviks-Frankenberry, K.A., Nikolenko, G.N., Pathak, V.K., The "connection" between HIV drug resistance and RNase H (2010) Viruses, 1476, p. 1503 Li, J.Z., Paredes, R., Ribaudo, H.J., Svarovskaia, E.S., Metzner, K.J., Kozal, M.J., Hullsiek, K.H., Kuritzkes, D.R., Low-frequency HIV-1 drug resistance mutations and risk of NNRTI-based antiretroviral treatment failure: A systematic review and pooled analysis (2012) JAMA, 305, pp. 1327-1335 Li, D., Zhan, P., De Clercq, E., Liu, X., Strategies for the design of HIV-1 non-nucleoside reverse transcriptase inhibitors: Lessons from the development of seven representative paradigms (2012) J Med Chem, 55, pp. 3595-3613 Das, K., Martinez, S.E., Bauman, J.D., Arnold, E., HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism (2012) Nat Struct Mol Biol, 19, pp. 253-259 Wright, D.W., Kashif Sadiq, S., De Fabritiis, G., Coveney, P.V., Thumbs down for HIV: Domain level rearrangements do occur in the NNRTI-bound HIV-1 reverse transcriptase (2012) J Am Chem Soc, 134, pp. 12885-12888 Kuroda, D.G., Bauman, J.D., Challa, J.R., Patel, D., Troxler, T., Das, K., Arnold, E., Hochstrasser, R.M., Snapshot of the equilibrium dynamics of a drug bound to human immunodeficiency virus 1 reverse transcriptase (2013) Nat Chem, 5, pp. 174-181 Singh, K., Marchand, B., Rai, D.K., Sharma, B., Michailidis, E., Ryan, E.M., Matzek, K.B., Sarafianos, S.G., Biochemical mechanism of HIV-1 resistance to rilpivirine (2012) J Biol Chem, 287, pp. 38110-38223 Kroeger, S.M.B., Rader, L.H., Franklin, A.M., Taylor, E.V., Smith, K.D., Smith Jr., R.H., Tirado-Rives, J., Jorgensen, W.L., Energetic effects for observed and unobserved HIV-1 reverse transcriptase mutations of residues L100, V106, and Y181 in the presence of nevirapine and efavirenz (2008) Bioorganic and Medicinal Chemistry Letters, 18 (3), pp. 969-972. , DOI 10.1016/j.bmcl.2007.12.033, PII S0960894X07014898 Udier-Blagovic, M., Tirado-Rives, J., Jorgensen, W.L., Structural and Energetic Analyses of the Effects of the K103N Mutation of HIV-1 Reverse Transcriptase on Efavirenz Analogues (2004) Journal of Medicinal Chemistry, 47 (9), pp. 2389-2392. , DOI 10.1021/jm0303507 Kar, P., Knecht, V., Energetics of mutation-induced changes in potency of lersivirine against HIV-1 reverse transcriptase (2012) J Phys Chem B, 116, pp. 6269-6278 Saparpakorn, P., Wolschann, P., Karpfen, A., Pungpo, P., Hannongbua, S., Systematic investigation on the binding of GW420867X as HIV-1 reverse transcriptase inhibitor (2011) Monatsh Chem, 142, pp. 961-971. , and references cited therein He, X., Mei, Y., Xiang, Y., Zhang, D.W., Zhang, J.Z.H., Quantum computational analysis for drug resistance of HIV-1 reverse transcriptase to nevirapine through point mutations (2005) Proteins: Structure, Function and Genetics, 61 (2), pp. 423-432. , DOI 10.1002/prot.20578 Raju, R.K., Burton, N.A., Hillier, I.H., Modelling the binding of HIV-reverse transcriptase and nevirapine: An assessment of quantum mechanical and force field approaches and predictions of the effect of mutations on binding (2010) Phys Chem Chem Phys, 12, pp. 7117-7125 Freitas, R.F., Galembeck, S.E., Effect of C-H⋯S and C-H⋯Cl interactions on the conformational preference of inhibitors of TIBO family (2006) Chem Phys Lett, 423, pp. 131-137 Freitas, R.F., Galembeck, S.E., Computational study of the interaction between TIBO inhibitors and Y181 (C181), K101, and Y188 amino acids (2006) Journal of Physical Chemistry B, 110 (42), pp. 21287-21298. , DOI 10.1021/jp063058u Ribone, S.R., Leen, V., Madrid, M., Dehaen, W., Daelemans, D., Pannecouque, C., Briñón, M.C., Synthesis, biological evaluation and molecular modeling of 4,6-diarylpyrimidines and diarylbenzenes as novel non-nucleosides HIV-1 reverse transcriptase inhibitors (2012) Eur J Med Chem, 58, pp. 485-492 Ren, J., Nichols, C.E., Chamberlain, P.P., Weaver, K.L., Short, S.A., Chan, J.H., Kleim, J.-P., Stammers, D.K., Relationship of potency and resilience to drug resistant mutations for GW420867X revealed by crystal structures of inhibitor complexes for wild-type, Leu100Ile, Lys101Glu, and Tyr188Cys mutant HIV-1 reverse transcriptases (2007) Journal of Medicinal Chemistry, 50 (10), pp. 2301-2309. , DOI 10.1021/jm061117m (2010) Discovery Studio Modeling Environment, Release 3.0, , Accelrys Software Inc. San Diego: Accelrys Software Inc Schaftenaar, G., Noordik, J.H., Molden: A pre- and post-processing program for molecular and electronic structures (2000) Journal of Computer-Aided Molecular Design, 14 (2), pp. 123-134. , DOI 10.1023/A:1008193805436 Becke, A.D., Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals (1997) J Chem Phys, 107, pp. 8554-8560 Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction (2006) J Comput Chem, 27, pp. 1787-1799 Weigend, F., Ahlrichs, R., (2005) Phys Chem Chem Phys, 7, pp. 3297-3305 Zhao, Y., Truhlar, D.G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals (2008) Theor Chem Accounts, 120, pp. 215-241 Dunning Jr., T.H., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen (1989) J Chem Phys, 90, pp. 1007-1023 Distasio Jr., R.A., Head-Gordon, M., Optimized spin-component scaled second-order Møller-Plesset perturbation theory for intermolecular interaction energies (2007) Mol Phys, 105, pp. 1073-1083 Boys, S.F., Bernardi, F., The calculations of small molecular interactions by the diferences of separate total energies. Some procedures with reduced errors (1970) Mol Phys, 19, pp. 553-566 Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, Revision A.02, , Gaussian, Inc., Wallingford CT Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C., Electronic structure calculations on workstation computers: The program system Turbomole (1989) Chem Phys Lett, 162, pp. 165-169 Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Weinhold, F., (2001) NBO 5.0, , Theoretical Chemistry Institute, University of Wisconsin, Madison Keith, T.A., (2011) AIMAll (Version 11.06.19) TK Gristmill Software, , http://aim.tkgristmill.com/), Overland Park, KS Johnson, E.R., Keinan, S., Mori-Sanchez, P., Contreras-Garcia, J., Cohen, A.J., Yang, W., Revealing noncovalent interactions (2010) J Am Chem Soc, 132, pp. 6498-6506 Jmol: An Open-source Java Viewer for Chemical Structures in 3D, , http://www.jmol.org/ Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) Journal of Molecular Graphics, 14 (1), pp. 33-38. , DOI 10.1016/0263-7855(96)00018-5 Youngs, T.G.A., Aten-an application for the creation, editing, and visualization of coordinates for glasses, liquids, crystals, and molecules (2010) J Comput Chem, 31, pp. 639-648 Schuchardt, K.L., Didier, B.T., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., Windus, T.L., Basis set exchange: A community database for computational sciences (2007) Journal of Chemical Information and Modeling, 47 (3), pp. 1045-1052. , DOI 10.1021/ci600510j Bickelhaupt, F.M., Chemistry with ADF (2001) Journal of Computational Chemistry, 22 (9), pp. 931-967. , DOI 10.1002/jcc.1056 Grimme, S., Anthony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J Chem Phys, 132, p. 154104 Van Der Wijst, T., Fonseca Guerra, C., Swart, M., Bickelhaupt, F.M., Lippert, B., A ditopic ion-pair receptor based on stacked nucleobase quartets (2009) Angew Chem Int Ed, 48, pp. 3285-3287 Fonseca Guerra, C., Van Der Wijst, T., Swart, M., Poater, J., Bickelhaupt, F.M., Adenine versus guanine quartets in aqueous solution: Dispersion-corrected DFT study on the differences in p-stacking and hydrogen-bonding behavior (2010) Theor Chem Accounts, 125, pp. 245-252 Bickelhaupt, F.M., Baerends, E.J., Kohn-Sham density functional theory: Predicting and understanding chemistry (2000) Reviews in Computational Chemistry, 15, pp. 1-86. , Lipkowitz KB, Boyd DB (eds) Wiley-VCH, New York Gilli, P., Pretto, L., Bertolasi, V., Gilli, G., Predicting hydrogen-bond strengths from acid-base molecular properties. The pKa slide rule: Toward the solution of a long-lasting problem (2009) Acc Chem Res, 42, pp. 33-44 Urashima, S., Asami, H., Ohba, M., Saigusa, H., Microhydration of the guanine-guanine and guanine-cytosine base pairs (2010) J Phys Chem A, 114, pp. 11231-11237 Ebrahimi, A., Habibi Khorassani, S.M., Delarami, H., Estimation of individual binding energies in some dimers involving multiple hydrogen bonds using topological properties of electron charge density (2009) Chem Phys, 365, pp. 18-23 Poater, J., Sodupe, M., Bertran, J., Sola, M., Hydrogen bonding and aromaticity in the guanine-cytosine base pair interacting with metal cations (M = Cu+, Ca2+ and Cu 2+) (2005) Molecular Physics, 103 (2-3), pp. 163-173. , DOI 10.1080/00268920512331316238 Grimme, S., Goerigk, L., Fink, R.F., Spin-component-scaled electron correlation methods (2012) WIREs Comput Mol Sci, 2, pp. 886-906 Hobza, P., Calculations on noncovalent interactions and databases of benchmark interaction energies (2012) Acc Chem Res, 45, pp. 663-672 Hohenstein, E.G., Sherrill, C.D., Wavefunction methods for noncovalent interactions (2012) WIREs Comput Mol Sci, 2, pp. 304-326 Riley, K.E., Pitonak, M., Jurecka, P., Hobza, P., Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories (2010) Chem Rev, 110, pp. 5023-5063 Kozuch, S., Martin, J.M.L., Halogen bonds: Benchmarks and theoretical analysis (2013) J Chem Theory Comput, 9, pp. 1918-1931 Cerny, J., Pitonak, M., Riley, K.E., Hobza, P., Complete basis set extrapolation and hybrid schemes for geometry gradients of noncovalent complexes (2011) J Chem Theory Comput, 7, pp. 3924-3934 Fonseca, G.C., Bickelhaupt, F.M., Snijders, J.G., Baerends, E.J., Hydrogen bonding in DNA base pairs: Reconciliation of theory and experiment (2000) Journal of the American Chemical Society, 122 (17), pp. 4117-4128. , DOI 10.1021/ja993262d Fonseca Guerra, C., Van Der Wijst, T., Bickelhaupt, F.M., Supramolecular switches based on the guanine-cytosine (GC) Watson-Crick pair: Effect of neutral and ionic substituents (2006) Chem Eur J, 12, pp. 3032-3042 Fonseca Guerra, C., Szekeres, Z., Bickelhaupt, F.M., Remote communication in a DNA-based nanoswitch (2011) Chem Eur J, 17, pp. 8816-8818 Fonseca Guerra, C., Zijlstra, H., Paragi, G., Bickelhaupt, F.M., Telomere structure and stability: Covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets Chem Eur J, 17, pp. 12612-12622 Parreira, R.L.T., Galembeck, S.E., Characterization of Hydrogen Bonds in the Interactions between the Hydroperoxyl Radical and Organic Acids (2003) Journal of the American Chemical Society, 125 (50), pp. 15614-15622. , DOI 10.1021/ja036846v Rauk, A., (1994) Orbital Interaction Theory of Organic Chemistry, , Wiley, New York Popelier, P.L.A., (2000) Atoms in Molecules: An Introduction, , Prentice Hall, New Jersey Bader, R.F.W., (1990) Atoms in Molecules, a Quantum Theory, , Oxford, Oxford Bader, R.F.W., Bond paths are not chemical bonds (2009) J Phys Chem A, 113, pp. 10391-10396 Matta, C.F., Hernandez-Trujillo, J., Tang, T.-H., Bader, R.F.W., Hydrogen-hydrogen bonding: A stabilizing interaction in molecules and crystals (2003) Chem Eur J, 9, pp. 1940-1951 Martin, P.A., Francisco, E., Blanco, M.A., Gatti, C., Bond paths as privileged exchange channels (2007) Chemistry - A European Journal, 13 (33), pp. 9362-9371. , DOI 10.1002/chem.200700408 Poater, J., Visser, R., Solà, M., Bickelhaupt, F.M., Polycyclic benzenoids: Why kinked is more stable than straight (2007) J Org Chem, 72, pp. 1134-1142 Grimme, S., Muck-Lichtenfeld, C., Erker, G., Kehr, G., Wang, H., Beckers, H., Willner, H., When do interacting atoms form a chemical bond? Spectroscopic measurements and theoretical analyses of dideuteriophenanthrene (2009) Angew Chem Int Ed, 48, pp. 2592-2595 Cerpa, E., Krapp, A., Flores-Moreno, R., Donald, K.J., Merino, G., Influence of endohedral confinement on the electronic interaction between He atoms: A He2@C20H20 Case Study (2009) Chem Eur J, 15, pp. 1985-1990 Cerpa, E., Krapp, A., Vela, A., Merino, G., The implications of symmetry of the external potential on bond paths (2008) Chem Eur J, 14, pp. 10232-10234 Poater, J., Sola, M., Bickelhaupt, F.M., Hydrogen-hydrogen bonding in planar biphenyl, predicted by atoms-In-molecules theory, does not exist (2006) Chem Eur J, 12, pp. 2889-2895 Strenalyuk, T., Haaland, A., Chemical bonding in the inclusion complex of He in adamantane (He@adam): The origin of the barrier to dissociation (2008) Chem Eur J, 14, pp. 10223-10226 Dem'Yanov, P., Polestshuk, P., A bond path and an attractive Ehrenfest force do not necessarily indicate bonding interactions: Case study on M2X2 (M=Li, Na, K X=H, OH, F, Cl) (2012) Chem Eur J, 18, pp. 4982-4993 Grabowski, S.J., What is the covalency of hydrogen bonding? (2011) Chem Rev, 111, pp. 2597-2625 Rozas, I., Alkorta, I., Elguero, J., Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors (2000) J Am Chem Soc, 122, pp. 11154-11161 Ziolkowski, M., Grabowski, S.J., Leszczynski, J., Cooperativity in hydrogen-bonded interactions: Ab initio and "atoms in molecules" analyses (2006) Journal of Physical Chemistry A, 110 (20), pp. 6514-6521. , DOI 10.1021/jp060537k Popelier, P.L.A., Characterization of a dihydrogen bond on the basis of the electron density (1998) J Phys Chem A, 102, pp. 1873-1878