dc.creatorRittner L.
dc.creatorUdupa J.K.
dc.creatorTorigian D.A.
dc.date2014
dc.date2015-06-25T17:53:33Z
dc.date2015-11-26T14:23:19Z
dc.date2015-06-25T17:53:33Z
dc.date2015-11-26T14:23:19Z
dc.date.accessioned2018-03-28T21:25:18Z
dc.date.available2018-03-28T21:25:18Z
dc.identifier9780819498274
dc.identifierProgress In Biomedical Optics And Imaging - Proceedings Of Spie. Spie, v. 9034, n. , p. - , 2014.
dc.identifier16057422
dc.identifier10.1117/12.2044297
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84902089796&partnerID=40&md5=b7d140a660251f0237da0afa17bee1dd
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86482
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86482
dc.identifier2-s2.0-84902089796
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1245074
dc.descriptionComputerized automatic anatomy recognition (AAR) is an essential step for implementing body-wide quantitative radiology (QR). Our strategy to automatically identify and delineate various organs in a given body region is based on fuzzy models and an organ hierarchy. In previous years, the basic algorithms of our AAR approach - model building, recognition, and delineation - and their evaluation were presented. In the present paper, we propose to replace the single fuzzy model built for each organ by a set of fuzzy models built for the same organ. Based on a dataset composed of CT images of the Thorax region of 50 subjects, our experiments indicate that recognition performance improves when using multiple models instead of a single model for each organ. It is interesting to point out that the improvement is not uniform for all organs, leading us to conclude that some organs will benefit from the multiple model approach more than others. © 2014 SPIE.
dc.description9034
dc.description
dc.description
dc.description
dc.descriptionIntrace Medical,Modus Medical Devices Inc.,The Society of Photo-Optical Instrumentation Engineers (SPIE),Ventana Medical Systems Inc.,XIFIN, Inc
dc.descriptionUdupa, J.K., Odhner, D., Falcao, A.X., Ciesielski, K.C., Miranda, P.A.V., Vaideeswaran, P., Mishra, S., Torigian, D.A., Fuzzy object modeling (2011) Proc. SPIE 7964, Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling, pp. 79640B
dc.descriptionUdupa, J.K., Odhner, D., Falcao, A.X., Ciesielski, K.C., Miranda, P.A.V., Matsumoto, M., Grevera, G.J., Torigian, D.A., Automatic anatomy recognition via fuzzy object models (2012) Proc. SPIE 8316, Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling, p. 831605
dc.descriptionUdupa, J.K., Odhner, D., Zao, L., Tong, Y., Matsumoto, M.M.S., Ciesielski, K.C., Falcao, A.X., Torigian, D.A., Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images Medical Image Analysis, , submitted
dc.descriptionWard Jr., J.H., Hierarchical grouping to optimize an objective function (1963) Journal of the American Statistical Association, 58, pp. 236-244
dc.languageen
dc.publisherSPIE
dc.relationProgress in Biomedical Optics and Imaging - Proceedings of SPIE
dc.rightsfechado
dc.sourceScopus
dc.titleMultiple Fuzzy Object Modeling Improves Sensitivity In Automatic Anatomy Recognition
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución