dc.creator | Rittner L. | |
dc.creator | Udupa J.K. | |
dc.creator | Torigian D.A. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:53:33Z | |
dc.date | 2015-11-26T14:23:19Z | |
dc.date | 2015-06-25T17:53:33Z | |
dc.date | 2015-11-26T14:23:19Z | |
dc.date.accessioned | 2018-03-28T21:25:18Z | |
dc.date.available | 2018-03-28T21:25:18Z | |
dc.identifier | 9780819498274 | |
dc.identifier | Progress In Biomedical Optics And Imaging - Proceedings Of Spie. Spie, v. 9034, n. , p. - , 2014. | |
dc.identifier | 16057422 | |
dc.identifier | 10.1117/12.2044297 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84902089796&partnerID=40&md5=b7d140a660251f0237da0afa17bee1dd | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/86482 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/86482 | |
dc.identifier | 2-s2.0-84902089796 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1245074 | |
dc.description | Computerized automatic anatomy recognition (AAR) is an essential step for implementing body-wide quantitative radiology (QR). Our strategy to automatically identify and delineate various organs in a given body region is based on fuzzy models and an organ hierarchy. In previous years, the basic algorithms of our AAR approach - model building, recognition, and delineation - and their evaluation were presented. In the present paper, we propose to replace the single fuzzy model built for each organ by a set of fuzzy models built for the same organ. Based on a dataset composed of CT images of the Thorax region of 50 subjects, our experiments indicate that recognition performance improves when using multiple models instead of a single model for each organ. It is interesting to point out that the improvement is not uniform for all organs, leading us to conclude that some organs will benefit from the multiple model approach more than others. © 2014 SPIE. | |
dc.description | 9034 | |
dc.description | | |
dc.description | | |
dc.description | | |
dc.description | Intrace Medical,Modus Medical Devices Inc.,The Society of Photo-Optical Instrumentation Engineers (SPIE),Ventana Medical Systems Inc.,XIFIN, Inc | |
dc.description | Udupa, J.K., Odhner, D., Falcao, A.X., Ciesielski, K.C., Miranda, P.A.V., Vaideeswaran, P., Mishra, S., Torigian, D.A., Fuzzy object modeling (2011) Proc. SPIE 7964, Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling, pp. 79640B | |
dc.description | Udupa, J.K., Odhner, D., Falcao, A.X., Ciesielski, K.C., Miranda, P.A.V., Matsumoto, M., Grevera, G.J., Torigian, D.A., Automatic anatomy recognition via fuzzy object models (2012) Proc. SPIE 8316, Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling, p. 831605 | |
dc.description | Udupa, J.K., Odhner, D., Zao, L., Tong, Y., Matsumoto, M.M.S., Ciesielski, K.C., Falcao, A.X., Torigian, D.A., Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images Medical Image Analysis, , submitted | |
dc.description | Ward Jr., J.H., Hierarchical grouping to optimize an objective function (1963) Journal of the American Statistical Association, 58, pp. 236-244 | |
dc.language | en | |
dc.publisher | SPIE | |
dc.relation | Progress in Biomedical Optics and Imaging - Proceedings of SPIE | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Multiple Fuzzy Object Modeling Improves Sensitivity In Automatic Anatomy Recognition | |
dc.type | Actas de congresos | |