dc.creatorTygel M.
dc.creatorSchleicher J.
dc.creatorHubral P.
dc.date1994
dc.date2015-06-26T17:27:28Z
dc.date2015-11-26T14:22:09Z
dc.date2015-06-26T17:27:28Z
dc.date2015-11-26T14:22:09Z
dc.date.accessioned2018-03-28T21:23:58Z
dc.date.available2018-03-28T21:23:58Z
dc.identifier
dc.identifierJournal Of Seismic Exploration. , v. 3, n. 3, p. 203 - 214, 1994.
dc.identifier9630651
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0028555994&partnerID=40&md5=df37e9df39b853318cc63f6e1499c217
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/96283
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/96283
dc.identifier2-s2.0-0028555994
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1244734
dc.descriptionThis paper examines the high-frequency approximations of two integrals associated with the name of Kirchhoff. The first one is known in the geophysical literature as the Kirchhoff-Helmholtz integral. It computes, in the time or frequency domains, the seismic acoustic/elastic response at a receiver, given the locations of a source-receiver pair, a laterally inhomogeneous velocity model and a reflector. The second one is the more recent diffraction-stack integral also known as the Kirchhoff-migration integral. With it, the observed seismic response of an unknown reflector, here formulated for arbitrary source-receiver configurations is transformed (imaged) into the reflector. Both integrals can be understood, both qualitatively and quantitatively, as operations asymptotically inverse to each other. -from Authors
dc.description3
dc.description3
dc.description203
dc.description214
dc.languageen
dc.publisher
dc.relationJournal of Seismic Exploration
dc.rightsfechado
dc.sourceScopus
dc.titleKirchhoff-helmholtz Theory In Modelling And Migration
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución