dc.creatorDiniz-Ehrhardt M.A.
dc.creatorMartinez J.M.
dc.creatorSantos S.A.
dc.date1994
dc.date2015-06-26T17:27:23Z
dc.date2015-11-26T14:21:55Z
dc.date2015-06-26T17:27:23Z
dc.date2015-11-26T14:21:55Z
dc.date.accessioned2018-03-28T21:23:45Z
dc.date.available2018-03-28T21:23:45Z
dc.identifier
dc.identifierComputers And Mathematics With Applications. , v. 27, n. 1, p. 11 - 24, 1994.
dc.identifier8981221
dc.identifier10.1016/0898-1221(94)90002-7
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-43949153392&partnerID=40&md5=3c01d7597d82c5e618a1f53ae6b14ad2
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/96254
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/96254
dc.identifier2-s2.0-43949153392
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1244677
dc.descriptionIn this paper, we consider a modification of the parallel projection method for solving overdetermined nonlinear systems of equations introduced recently by Diniz-Ehrhardt and Martínez [1]. This method is based on the classical Cimmino's algorithm for solving linear systems. The components of the function are divided into small blocks, as an attempt to correct the intrinsic ill-conditioning of the system, and the new iteration is a convex combination of the projections onto the linear manifolds defined by different blocks. The modification suggested here was motivated by the application of the method to the resolution of a nonlinear Fredholm first kind integral equation. We prove convergence results and we report numerical experiments. © 1993.
dc.description27
dc.description1
dc.description11
dc.description24
dc.descriptionDiniz-Ehrhardt, Martínez, A parallel projection method for overdetermined nonlinear systems of equations (1993) Numerical Algorithms, , (to appear)
dc.descriptionCimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari (1938) La Ricerca Scientifica Ser II, 1, pp. 326-333. , Anno IV
dc.descriptionDe Pierro, Iusem, A simultaneous projection method for linear inequalities (1985) Linear Algebra and its Applications, 64, pp. 243-253
dc.descriptiondos Santos, A parallel subgradient projections method for the convex feasibility problem (1987) Journal of Computational and Applied Mathematics, 18, pp. 307-320
dc.descriptionCensor, Row-Action Methods for Huge and Sparse Systems and Their Applications (1981) SIAM Review, 23, pp. 444-466
dc.descriptionSantos, Iterative linear methods and regularization (1993) Ph.D. Dissertation, , Department of Applied Mathematics, University of Campinas
dc.descriptionElden, Algorithms for the regularization of ill-conditioned least problems (1977) BIT, 17, pp. 134-145
dc.descriptionTikhonov, Arsenin, (1977) Solutions of Ill-Posed Problems, , John Wiley, New York
dc.descriptionVogel, A constrained least squares regularization method for nonlinear ill-posed problems (1990) SIAM Journal on Control and Optimization, 28 (1), pp. 34-49
dc.descriptionIto, Künisch, On the Choice of the Regularization Parameter in Nonlinear Inverse Problems (1992) SIAM Journal on Optimization, 2, pp. 376-404
dc.descriptionMorozov, (1984) Methods for Solving Incorrectly Posed Problems, , Springer-Verlag, New York
dc.descriptionO'Sullivan, Wahba, A cross-validated Bayesian retrieval algorithm for nonlinear remote sensing experiments (1985) Journal of Computational Physics, 59, pp. 441-455
dc.descriptionDennis, Schnabel, (1983) Numerical Methods for Unconstrained Optimization and Nonlinear Equations, , Prentice Hall, Englewood Cliffs, NJ
dc.descriptionMartínez, Fixed-point quasi-Newton methods (1992) SIAM Journal on Numerical Analysis, 29, pp. 1413-1434
dc.languageen
dc.publisher
dc.relationComputers and Mathematics with Applications
dc.rightsfechado
dc.sourceScopus
dc.titleParallel Projection Methods And The Resolution Of Ill-posed Problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución