dc.creator | Peres P.L.D. | |
dc.creator | Umezu C.K. | |
dc.creator | Guaitoli G. | |
dc.date | 1994 | |
dc.date | 2015-06-26T17:26:58Z | |
dc.date | 2015-11-26T14:21:24Z | |
dc.date | 2015-06-26T17:26:58Z | |
dc.date | 2015-11-26T14:21:24Z | |
dc.date.accessioned | 2018-03-28T21:23:10Z | |
dc.date.available | 2018-03-28T21:23:10Z | |
dc.identifier | | |
dc.identifier | Proceedings Of The Ieee Conference On Decision And Control. Ieee, Piscataway, Nj, United States, v. 1, n. , p. 565 - 570, 1994. | |
dc.identifier | 1912216 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-0028758711&partnerID=40&md5=927c5b0b09b094c2fe42f3d6f2806900 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/96170 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/96170 | |
dc.identifier | 2-s2.0-0028758711 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1244525 | |
dc.description | This paper addresses the problem of H2 control of uncertain discrete-time systems with regional pole constraints. All quadratic stabilizing state feedback controllers can be mapped into a convex set. By imposing on the elements of this set additional convex constraints, the associated control gain obtained guarantees a specific pole location to the closed-loop uncertain system. A convex optimization procedure is then used in order to minimize an upper bound of the H2 norm of the controlled systems, providing thus an H2 guaranteed cost control with regional pole constraints. Examples illustrate the theoretical results. | |
dc.description | 1 | |
dc.description | | |
dc.description | 565 | |
dc.description | 570 | |
dc.language | en | |
dc.publisher | IEEE, Piscataway, NJ, United States | |
dc.relation | Proceedings of the IEEE Conference on Decision and Control | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | H2 Control Of Uncertain Discrete-time Systems With Regional Pole Constraints | |
dc.type | Actas de congresos | |