dc.creatorPeres P.L.D.
dc.creatorUmezu C.K.
dc.creatorGuaitoli G.
dc.date1994
dc.date2015-06-26T17:26:58Z
dc.date2015-11-26T14:21:24Z
dc.date2015-06-26T17:26:58Z
dc.date2015-11-26T14:21:24Z
dc.date.accessioned2018-03-28T21:23:10Z
dc.date.available2018-03-28T21:23:10Z
dc.identifier
dc.identifierProceedings Of The Ieee Conference On Decision And Control. Ieee, Piscataway, Nj, United States, v. 1, n. , p. 565 - 570, 1994.
dc.identifier1912216
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0028758711&partnerID=40&md5=927c5b0b09b094c2fe42f3d6f2806900
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/96170
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/96170
dc.identifier2-s2.0-0028758711
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1244525
dc.descriptionThis paper addresses the problem of H2 control of uncertain discrete-time systems with regional pole constraints. All quadratic stabilizing state feedback controllers can be mapped into a convex set. By imposing on the elements of this set additional convex constraints, the associated control gain obtained guarantees a specific pole location to the closed-loop uncertain system. A convex optimization procedure is then used in order to minimize an upper bound of the H2 norm of the controlled systems, providing thus an H2 guaranteed cost control with regional pole constraints. Examples illustrate the theoretical results.
dc.description1
dc.description
dc.description565
dc.description570
dc.languageen
dc.publisherIEEE, Piscataway, NJ, United States
dc.relationProceedings of the IEEE Conference on Decision and Control
dc.rightsfechado
dc.sourceScopus
dc.titleH2 Control Of Uncertain Discrete-time Systems With Regional Pole Constraints
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución