dc.creatorCosta M.I.S.
dc.creatorBoldrini J.L.
dc.creatorBassanezi R.C.
dc.date1995
dc.date2015-06-26T17:15:06Z
dc.date2015-11-26T14:21:14Z
dc.date2015-06-26T17:15:06Z
dc.date2015-11-26T14:21:14Z
dc.date.accessioned2018-03-28T21:22:59Z
dc.date.available2018-03-28T21:22:59Z
dc.identifier
dc.identifierMathematical Biosciences. , v. 125, n. 2, p. 191 - 209, 1995.
dc.identifier255564
dc.identifier10.1016/0025-5564(94)00027-W
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0029240378&partnerID=40&md5=ade2b04aff829360d1a2e1826e6e8b3f
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/96095
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/96095
dc.identifier2-s2.0-0029240378
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1244473
dc.descriptionA system of differential equations for the control of tumor cells growth in a cycle nonspecific chemotherapy is presented. First-order drug kinetics and drug resistance are taken into account in a class of optimal control problems. The results show that the strategy corresponding to the maximum rate of drug injection is optimal for the Malthusian model of cell growth (which is a relatively good model for the initial phase of tumor growth). For more general models of cell growth, this strategy proved to be suboptimal under certain conditions. © 1995.
dc.description125
dc.description2
dc.description191
dc.description209
dc.descriptionAbulesz, Lyberatos, Novel approach for determining optimal treatment regimen for cancer chemotherapy (1988) Internat. J. Syst. Sci., 19, pp. 1483-1497
dc.descriptionColdman, Goldie, A model for the resistance of tumor cells to cancer chemotherapeutic agents (1983) Math Biosci., 65, pp. 291-307
dc.descriptionColdman, Goldie, A stochastic model for the origin and treatment of tumors containing drug-resistant cells (1986) Bull. Math. Biol., 48, pp. 279-292
dc.descriptionM. I. S. Costa, J. L. Boldrini, and R. C. Bassanezi, Chemotherapeutic treatments involving drug resistance and level of normal cells as a criterion of toxicity, Math. Biosci., in pressCosta, Boldrini, Bassanezi, Optimal chemical control of populations developing drug resistance (1992) Mathematical Medicine and Biology, 9, pp. 215-226
dc.descriptionCosta, Boldrini, Bassanezi, Optimal Chemotherapy A Case Study with Drug Resistance Saturation Effect and Toxicity (1994) Mathematical Medicine and Biology, 11, pp. 45-59
dc.descriptionEisen, Mathematical Models in Cell Biology and Cancer Chemotherapy (1978) Lecture Notes in Biomathematics, 30. , 2nd ed., Springer-Verlag
dc.descriptionGoldie, Coldman, A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate (1979) Cancer Treat. Rep., 63 (11-12), pp. 1727-1733
dc.descriptionHale, (1980) Ordinary Differential Equations, , 2nd ed., Krieger, Huntington, NY
dc.descriptionHarnevo, Agur, Drug resistance as a dynamic process in a model for multistep gene amplification under various levels of selection stringency (1992) Cancer Chemother. Pharmacol., 30, pp. 469-479
dc.descriptionKimmel, Axelrod, Mathematical models for gene amplification with application to cellular drug resistance and tumorigenicity (1990) Genetics, 125, pp. 633-644
dc.descriptionKimmel, Axelrod, Wahl, A branching process model of gene amplification following chromosome breakage (1992) Mutation Research/Reviews in Genetic Toxicology, 276, pp. 225-239
dc.descriptionKirk, (1970) Optimal Control Theory, , Prentice-Hall, Englewood Cliffs, NJ
dc.descriptionSkipper, The forty year old mutation theory of Luria and Delbruck and its pertinence to cancer chemotherapy (1983) Adv. Cancer Res., 40, pp. 331-363
dc.descriptionSwan, Role of optimal control theory in cancer chemotherapy (1990) Math. Biosci., 101, pp. 237-284
dc.descriptionSwan, Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma (1977) Bull. Math. Biol., 39, pp. 317-337
dc.descriptionVaidya, Alexandro, Jr., Evaluation of some mathematical models for tumor growth (1982) Internat. J. Bio. Med. Comput., 13, pp. 19-35
dc.descriptionVendite, Modelagem Matemática para o Crescimento Tumoral e o Problema de Resistência Celular aos Fármacos Anti-Blásticos (1988) Ph.D. Thesis, , Faculdade de Engenharia Elétrica, Universidade Estadual de Campinas, SP, Brasil
dc.languageen
dc.publisher
dc.relationMathematical Biosciences
dc.rightsfechado
dc.sourceScopus
dc.titleDrug Kinetics And Drug Resistance In Optimal Chemotherapy
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución