dc.creatorFonseca T.C.
dc.creatorMendes J.R.P.
dc.creatorSerapiao A.B.S.
dc.creatorGuilherme I.R.
dc.date2006
dc.date2015-06-30T18:04:10Z
dc.date2015-11-26T14:20:21Z
dc.date2015-06-30T18:04:10Z
dc.date2015-11-26T14:20:21Z
dc.date.accessioned2018-03-28T21:22:00Z
dc.date.available2018-03-28T21:22:00Z
dc.identifier0889866023; 9780889866027
dc.identifierProceedings Of The 2nd Iasted International Conference On Computational Intelligence, Ci 2006. , v. , n. , p. 152 - 157, 2006.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-56349150914&partnerID=40&md5=7107786357ebec417c534d35d5d2f78e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102939
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102939
dc.identifier2-s2.0-56349150914
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1244221
dc.descriptionBit performance prediction has been a challenging problem for the petroleum industry. It is essential in cost reduction associated with well planning and drilling performance prediction, especially when rigs leasing rates tend to follow the projects-demand and barrel-price rises. A methodology to model and predict one of the drilling bit performance evaluator, the Rate of Penetration (ROP), is presented herein. As the parameters affecting the ROP are complex and their relationship not easily modeled, the application of a Neural Network is suggested. In the present work, a dynamic neural network, based on the Auto-Regressive with Extra Input Signals model, or ARX model, is used to approach the ROP modeling problem. The network was applied to a real oil offshore field data set, consisted of information from seven wells drilled with an equal-diameter bit.
dc.description
dc.description
dc.description152
dc.description157
dc.descriptionSiqueira, C., Antes tarde do que sem contratos. (In Portuguese) (2005) Brasil Energia, 298, pp. 26-28
dc.descriptionUnneland, T., Hauser, M., Real-Time Asset Management: From Vision to Engagement-An Operator's Experience (2005) Proc. SPE Annual Technical Conference and Exhibition, , Dallas, USA
dc.descriptionIversen, F.P., Cayeux, E., Dvergsnes, E.W., Gravdal, J.E., Vefring, E.H., Mykletun, B., Torsvoll, A., Merlo, A., Monitoring and Control of Drilling Utilizing Continuously Updated Process Models (2005) Proc. IADC/SPE Drilling Conference, , Miami, USA
dc.descriptionThonhauser, G., Wallnoefer, G., Mathis, W., Ettl, J., Use of Real-Time Rig-Sensor Data To Improve Daily Drilling Reporting, Benchmarking, and Planning - A Case Study (2006) Proc. Intelligent Energy Conference and Exhibition, , Amsterdam, The Netherlands
dc.descriptionBourgoyne Jr., A.T., Young Jr., F.S., A multiple regression approach to optimal drilling and abnormal detection (1974), pp. 371-384. , 4R.V. Barragan, Otimização dos parâmetros mecânicos nas brocas para obter o custo mínimo de uma fase de um poço, (In Portuguese) Masters Dissertation, Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas. Campinas, Brazil, 1995Mohaghegh, S., Arefi, R., Ameri, S., Aminiand, K., Nutter, R., Petroleum reservoir characterization with the aid of artificial neural networks (1996) Journal of Petroleum Sciences and Engineering, 16 (4), pp. 263-274
dc.descriptionWang, F., Wang, X.J., Ma, Z.Y., Yan, J.H., Chi, Y., Wei, C.Y., Ni, M.J., Cen, K.F., The research on the estimation for the NOx emissive concentration of the pulverized coal boiler by the flame image processing technique (2002) Fuel, 81 (16), pp. 2113-2120
dc.descriptionThaler, M., Grabec, I., Poredos, A., Prediction of energy consumption and risk of excess demand in a distribution system (2005) Physica A: Statistical Mechanics and its Applications, 355 (1), pp. 46-53
dc.descriptionChong, A.Z.S., Wilcox, S.J., Ward, J., Prediction of gaseous emissions from a chain grate stoker boiler using neural networks of ARX structure (2001) IEE Proceedings Science, Measurement & Technology, 148 (3), pp. 95-102
dc.descriptionCoelho, D.K., Roisenberg, M., Freitas Filho, P.J., Jacinto, C.M.C., Risk Assessment of Drilling and Completion Operations in Petroleum Wells Using a Monte Carlo and a Neural Network Approach (2005) Proc. Winter Simulation Conference, , Orlando, USA
dc.descriptionDashevskiy, D., Dubinsky, V., Macpherson, J.D., Application of neural networks for predictive control in drilling dynamics (1999) Proc. SPE Annual Technical Conference and Exhibition, , Houston, USA
dc.descriptionBilgesu, H.I., Tetrick, L.T., Altmis, U., Mohaghegh, S., Ameri, S., A new approah for the prediction of rate of penetration (ROP) values (1997) Proc. SPE Eastern Regional Meeting, , Lexington, USA
dc.descriptionNorgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K., (2000) Neural networks for modeling and control of dynamic systems: A practitioner's handbook, , London, UK: Springer
dc.descriptionHaykin, S., (1999) Neural networks: A comprehensive foundation, , Upper Saddle River, USA: Prentice-Hall
dc.descriptionMarquardt, D., An algorithm for least-squares estimations of nonlinear parameters (1963) SIAM Journal on Applied Mathematics, 11 (2), pp. 431-441
dc.descriptionSiegel, A.F., (1988) Statistics and Data Analysis, , New York, USA: John Wiley & Sons
dc.languageen
dc.publisher
dc.relationProceedings of the 2nd IASTED International Conference on Computational Intelligence, CI 2006
dc.rightsfechado
dc.sourceScopus
dc.titleApplication Of Arx Neural Networks To Model The Rate Of Penetration Of Petroleum Wells Drilling
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución