dc.creatorAiroldi C.
dc.creatorAlcantara E.F.C.
dc.date1995
dc.date2015-06-26T17:13:37Z
dc.date2015-11-26T14:19:47Z
dc.date2015-06-26T17:13:37Z
dc.date2015-11-26T14:19:47Z
dc.date.accessioned2018-03-28T21:21:19Z
dc.date.available2018-03-28T21:21:19Z
dc.identifier
dc.identifierThermochimica Acta. , v. 259, n. 1, p. 95 - 102, 1995.
dc.identifier406031
dc.identifier10.1016/0040-6031(95)02295-D
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0002043112&partnerID=40&md5=c36fa4d0cc637fe610838fbf655c79e6
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/95769
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/95769
dc.identifier2-s2.0-0002043112
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1244046
dc.descriptionAcetylacetone was covalently immobilized on silica gel to produce a new surface (Sil-ac), having 0.62 mmol of ligand attached per gram of silica, which was characterized by means of elemental analysis and physical measurements, before being submitted to calorimetric measurements. Thus, a suspension of this anchored surface in ethanol or acetone was calorimetrically titrated with divalent cations (Co, Ni, Cu, Zn, Cd, Hg). The resulting isotherms conformed to a modified Langmuir equation. After linearization of these isotherms, the enthalpies of cation/surface adsorption and the interfacial equilibrium constant, as well as the variation of free energies and entropies, were calculated. In acetone, adsorption of copper gives rise to an exothermic ΔH of - 93.38 ± 0.94 kJ mol-1, while cobalt, 41.80 ± 0.42 kJ mol-1, and zinc, 2.38 ± 0.02 kJ mol-1, give an endothermic adsorption. In ethanol, the endothermic ΔH of 52.64 ± 0.53 kJ mol-1 for zinc contrasts with the exothermic enthalpies of adsorption observed for other cations, especially for mercury, - 102.20 ± 1.02 kJ mol-1 and nickel, -137.70 ± 1.38 kJ mol-1. © 1995.
dc.description259
dc.description1
dc.description95
dc.description102
dc.descriptionIler, (1979) The Chemistry of Silica, , Wiley, New York
dc.descriptionD'Hamers, Philippaerts, der Voort, Vansant, Siloxane bridges as reactive sites on silica gel. Fourier transform infrared?photoacoustic spectroscopic analysis of the chemisorption of diborane (1990) Journal of the Chemical Society, Faraday Transactions, 86, p. 3747
dc.descriptionDeschler, Kleinschmit, Panster, 3-Chloropropyltrialkoxysilanes?Key Intermediates for the Commercial Production of Organofunctionalized Silanes and Polysiloxanes (1986) Angewandte Chemie International Edition in English, 25, p. 236
dc.descriptionBogart, Leyden, Wade, Schafer, Carr, (1989) J. Chromatogr., 483, p. 209
dc.descriptionKurusu, Synthesis and Reaction of a Silica-Supported Catalyst with Ammonium Groups. Immobilized Ammonium Groups on Silica (1990) Journal of Macromolecular Science: Part A - Chemistry, 27, p. 1389
dc.descriptionSimonzadeh, Schilt, Chelation Properties of Silica-Bound 1,10-Phenanthroline (1989) Journal of Coordination Chemistry, 20, p. 117
dc.descriptionAiroldi, Alcântara, Chemisorption of some metal(II) chlorides on silica-immobilized acetylhydrazine (1989) Colloids and Surfaces, 39, p. 219
dc.descriptionKudryavtsev, Bernadyuk, Lisichkin, Ion exchangers based on modified mineral carriers (1989) Russian Chemical Reviews, 58, p. 406
dc.descriptionKallury, Lee, Thompson, (1993) Anal. Chem., 65, p. 2459
dc.descriptionHaan, van den Bogarert, Bongeé, van der Ven, Characterization of modified silica powders by fourier transform infrared spectroscopy and cross-polarization magic angle spinning NMR (1986) Journal of Colloid and Interface Science, 110, p. 591
dc.descriptionLisichkin, Kudryavtsev, Nesterenko, (1993) J. Anal. Chem. USSR, 38, p. 1288
dc.descriptionAiroldi, Alcântara, Nakamura, Paixão, Vargas, (1993) J. Mater. Chem., 3, p. 479
dc.descriptionGona̧lves, Airoldi, (1989) Polyhedron, 8, p. 2901
dc.descriptionPyell, Stork, (1992) Fresenius J. Anal. Chem., 343, p. 576
dc.descriptionAiroldi, Gushikem, Espínola, Adsorption of divalent cations on the silica-gel surface modified with N-(2-aminoethyl-3-aminopropyl) groups (1986) Colloids and Surfaces, 17, p. 314
dc.descriptionSpokenko, Trofimchuk, Zaitsev, (1982) Russ. J. Inorg. Chem., 27, p. 1458
dc.descriptionGushikem, Silva, (1985) J. Colloid Interface Sci, 107, p. 81
dc.descriptionGona̧lves, Airoldi, Immobilized 3-aminopyridine on silica: Adsorption of some metal (II) chlorides in non-aqueous solutions (1987) Colloids and Surfaces, 28, p. 199
dc.descriptionAiroldi, Santos, (1994) J. Mater. Chem., 4, p. 1479
dc.descriptionTavares, O'Sullivan, Hauser, (1962) J. Org. Chem., 27, p. 1251
dc.descriptionJoshi, Pathak, (1977) Coord. Chem. Rev., 22, p. 37
dc.descriptionBreitmaier, Voelter, 13C NMR Spectroscopy: Methods and Applications in Organic Chemistry (1987) 13C NMR Spectroscopy: Methods and Applications in Organic Chemistry, , 2nd edn., New York
dc.descriptionTanamushi, (1983) Adsorption from Solution, , Academic Press, New York
dc.descriptionJednacak-Biscan, Pravdic, (1980) J. Colloid Interface Sci., 75, p. 322
dc.descriptionJednacak-Biscan, Pravdic, Adsorption phenomena on glass surfaces. III. a microcalorimetric study of adsorption of n-butanol on heat treated surfaces of controlled pore glass (1982) Thermochimica Acta, 53, p. 203
dc.descriptionAiroldi, Santos, Jr., (1986) Thermochim. Acta, 104, p. 111
dc.descriptionAiroldi, Chagas, (1992) Coord. Chem. Rev., 119, p. 29
dc.languageen
dc.publisher
dc.relationThermochimica Acta
dc.rightsfechado
dc.sourceScopus
dc.titleSilica-gel-immobilized Acetylacetone-some Thermodynamic Data In Non-aqueous Solvents
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución