Artículos de revistas
Lithograph-moulded Poly-l-co-d,l Lactide Porous Membranes For Osteoblastic Culture
Registro en:
Materials Research. , v. 17, n. 1, p. 7 - 15, 2014.
15161439
10.1590/S1516-14392013005000156
2-s2.0-84897883931
Autor
Messias A.D.
Lucchesi C.
Coraca-Huber D.C.
Filho A.P.
Dueka E.A.R.
Institución
Resumen
Pore size, shape, wall morphology, porosity, and interconnectivity are important characteristics of the scaffolds. Lithography is a manufacturing technique that allows the production of tridimensional scaffolds with a controllable and reproducible inner architecture. The aim of this study was to use lithography to create a poly-L-co-D,L lactide (PLDLA) scaffold with symmetrical pore size and distribution, and to evaluate its biocompatibility with osteoblasts in vitro. Lithographic moulds were used to produce porous PLDLA membranes by a casting procedure. Osteoblasts were removed from calvarial bones and seeded onto porous and smooth PLDLA membranes after which cell viability and adhesion assays, cytochemical analysis and scanning electron microscopy were used to characterize the cells. Cell viability and adhesion assays, cytochemical analysis, and scanning electron microscopy were carried out. Cell viability was similar on porous and smooth PLDLA membranes but higher than on a polystyrene substrate (positive control). Although osteoblasts adhered to the surface of all the materials tested, cell adhesion to lithographed PLDLA was greater than to smooth PLDLA membranes. In conclusion, osteoblasts interacted well with PLDLA membranes, as shown by the viability and adhesion assays and by the enhanced collagen production. 17 1 7 15 Beresford, J.N., Graves, S.E., Smoothy, C.A., Formation of mineralized nodules by bone derived cells in vitro: A model of bone formation? (1993) American Journal of Medical Genetics, 45 (2), pp. 163-178. , http://dx.doi.org/10.1002/ajmg.1320450205, PMid:8456798 Elgendy, H.M., Norman, M.E., Keaton, A.R., Laurencin, C.T., Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: An approach towards the development of a bone-bioerodible polymer composite material (1993) Biomaterials, 14 (4), pp. 263-269. , http://dx.doi.org/10.1016/0142-9612(93)90116-J Tang, Z.G., Hunt, J.A., The effect of PLGA doping of polycaprolactone films on the control of osteoblast adhesion and proliferation in vitro (2006) Biomaterials., 27 (25), pp. 4409-4418. , http://dx.doi.org/10.1016/j.biomaterials.2006.04.009, PMid:16677705 Service, R.F., Tissue engineers build new bone (2000) Science., 289 (5484), pp. 1498-1500. , http://dx.doi.org/10.1126/science.289.5484.1498, PMid:10991738 Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., Cheng, L., Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/ polyamide composite scaffolds for bone tissue engineering (2007) Biomaterials., 28 (22), pp. 3338-3348. , http://dx.doi.org/10.1016/j.biomaterials.2007.04.014, PMid:17481726 Wan, Y., Wang, Y., Liu, Z., Qu, X., Han, B., Bei, J., Adhesion and proliferation of OCT-1 osteoblast-like cells on micro-and nano-scale topography structured poly(L-lactide) (2005) Biomaterials., 26 (21), pp. 4453-4459. , http://dx.doi.org/10.1016/j.biomaterials.2004.11.016, PMid:15701374 Sarazin, P., Roy, X., Favis, B.D., Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers (2004) Biomaterials., 25 (28), pp. 5965-5978. , http://dx.doi.org/10.1016/j.biomaterials.2004.01.065, PMid:15183611 Lee, S.J., Kang, H.W., Park, J.K., Rhie, J.W., Hahn, S.K., Cho, D.W., Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds (2008) Biomedical Microdevices., 10 (2), pp. 233-241. , http://dx.doi.org/10.1007/s10544-007-9129-4, PMid:17885804 Mendes, A.C., Smith, K.H., Tejeda-Montes, E., Engel, E., Reis, R.L., Azevedo, H.S., Co-assembled and microfabricated bioactive membranes (2013) Advanced Functional Materials, 23 (4), pp. 430-438. , http://dx.doi.org/10.1002/adfm.201201065 Detsch, R., Guillon, O., Wondraczek, L., Boccaccini, A.R., Initial attachment of rMSC and MG-63 cells on Patterned Bioglass® substrates (2012) Advanced Engineering Materials, 14 (3), pp. B38-B44. , http://dx.doi.org/10.1002/adem.201180068 Pelaez-Vargas, A., Gallego-Perez, D., Carvalho, A., Fernandes, M.H., Hansford, D.J., Monteiro, F.J., Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration - In vitro study (2013) Journal of Biomedical Materials Research - Part B Applied Biomaterials, 101 (5), pp. 762-769. , http://dx.doi.org/10.1002/jbm.b.32879, PMid:23359600 Wang, P.-Y., Li, W.T., Yu, J., Tsai, W.B., Modulation of osteogenic, adipogenic and myogenic differentiation of mesenchymal stem cells by submicron grooved topography (2012) Journal of Materials Science: Materials in Medicine, 23 (12), pp. 3015-3028. , http://dx.doi.org/10.1007/s10856-012-4748-6, PMid:22903603 Prodanov, L., Lamers, E., Domanski, M., Luttge, R., Jansen, J.A., Walboomers, X.F., The effect of nanometric surface texture on bone contact to titanium implants in rabbit tibia (2013) Biomaterials., 34 (12), pp. 2920-2927. , http://dx.doi.org/10.1016/j.biomaterials.2013.01.027, PMid:23380354 Cai, Y.-Z., Zhang, G.-R., Wang, L.-L., Jiang, Y.-Z., Ouyang, H.-W., Zou, X.-H., Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering (2012) Journal of Biomedical Materials Research Part A., 100 (5), pp. 1187-1194. , http://dx.doi.org/10.1002/jbm.a.34063, PMid:22345081 Ciapetti, G., Granchi, D., Devescovi, V., Baglio, S.R., Leonardi, E., Martini, D., Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs (2012) International Journal of Molecular Sciences., 13 (2), pp. 2439-2458. , http://dx.doi.org/10.3390/ijms13022439, PMid:22408463 PMCid:PMC3292032 Motta, A., Duek, E., Síntese, caracterização e degradação in vitro do poli(L-ácido latico) (2006) Polímeros., 16 (1), pp. 26-32. , http://dx.doi.org/10.1590/S0104-14282006000100008 Agrawal, C.M., Ray, R.B., Biodegradable polymeric scaffolds for musculoskeletal tissue engineering (2001) Journal of Biomedical Materials Research, 55 (2), pp. 141-150. , http://dx.doi.org/10.1002/1097-4636(200105)552141::AID-JBM100030CO2-J Peters, M., Mooney, D., Synthetic extracellular matrices for cell transplantation (1997) Materials Science Forum, 250, pp. 43-52. , In: Liu D and Dixit V. Porous materials for tissue engineering,Einfield: Trans Tech Publication Motta, A., Duek, E., Síntese e caracterização do copolímero poli(L-co-D,L-ácido lático) (2007) Polímeros., 17 (2), pp. 123-129. , http://dx.doi.org/10.1590/S0104-14282007000200011 Yamamoto, N., Furuya, K., Hanada, K., Progressive development of the osteoblast phenotype during differentiation of osteoprogenitor cells derived from fetal rat calvaria: Model for in vitro bone formation (2002) Biological and Pharmaceutical Bulletin, 25 (4), pp. 509-515. , http://dx.doi.org/10.1248/bpb.25.509 Moreira, P.L., An, Y.H., Santos, Jr.A.R., Genari, S.C., Vitro analysis of anionic collagen scaffolds for bone repair (2004) Journal of Biomedical Materials Research: Part B, Applied Biomaterials, 71 (2), pp. 229-237. , http://dx.doi.org/10.1002/jbm.b.30026, PMid:15386402 Whiston, S.W., Whitson, M.A., Bowers Jr., D.E., Falk, M.C., Factors influencing synthesis and mineralization of bone matrix from fetal bovine bone cells grown in vitro (1992) Journal of Bone and Mineral Research, 7 (7), pp. 727-741 Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) Journal of Immunological Methods, 65 (1-2), pp. 55-63. , http://dx.doi.org/10.1016/0022-1759(83)90303-4 Lucchesi, C., Ferreira, B., Duek, E., Santos, A., Joazeiro, P., Increased response of Vero cells to PHBV matrices treated by plasma (2008) Journal of Materials Science: Materials in Medicine, 19 (2), pp. 635-643. , http://dx.doi.org/10.1007/s10856-007-0169-3, PMid:17619989 Uzumaki, E.T., Lambert, C.S., Santos, Jr.A.R., Zavaglia, C.A.C., Surface properties and cell behaviour of diamond-like carbon coatings produced by plasma immersion (2006) Thin Solid Films., 515 (1), pp. 293-300. , http://dx.doi.org/10.1016/j.tsf.2005.12.081 (1992) Biological Evaluation of Medical Devices, , International Organization for Standardization - ISO,Part 5: Tests for cytotoxicity: in vitro methods. ISO Ignatius, A.A., Claes, L.E., In vitro biocompatibility of bioresorbable polymers: Poly(L, DL-lactide) and poly(L-lactide-co-glycolide) (1996) Biomaterials, 17 (8), pp. 831-839. , http://dx.doi.org/10.1016/0142-9612(96)81421-9 Marques, A.P., Cruz, H.R., Coutinho, O.P., Reis, R.L., Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells (2005) Journal of Materials Science: Materials in Medicine, 16 (9), pp. 833-842. , http://dx.doi.org/10.1007/s10856-005-3580-7, PMid:16167112 Coraça, D.C., Duek, E.A., Padovani, C.A., Camilli, J.A., Osteointegration of poly(L: -lactic acid)PLLA and poly(L: -lactic acid)PLLA/poly(ethylene oxide)PEO implants in rat tibiae (2008) Journal of Materials Science: Materials in Medicine, 19 (7), pp. 2699-2704. , http://dx.doi.org/10.1007/s10856-008-3397-2, PMid:18283533 Coraça-Huber, D.C., Duek, E.A., Etchebehere, M., Magna, L.A., Amstalden, E.M., The use of vancomycin-loaded poly-l-lactic acid and poly-ethylene oxide microspheres for bone repair: An in vivo study (2012) Clinics, 67 (7), pp. 793-798. , http://dx.doi.org/10.6061/clinics/2012(07)15 Ku, Y., Shim, I.K., Lee, J.Y., Park, Y.J., Rhee, S.H., Nam, S.H., Chitosan/poly(L-lactic acid) multilayered membrane for guided tissue regeneration (2009) Journal of Biomedical Materials Research: Part A., 90 (3), pp. 766-772. , http://dx.doi.org/10.1002/jbm.a.31846, PMid:18615563 Pierucci, A., De Duek, E.A., De Oliveira, A.L., Peripheral nerve regeneration through biodegradable conduits prepared using solvent evaporation (2008) Tissue Engineering: Part A., 14 (5), pp. 595-606. , http://dx.doi.org/10.1089/tea.2007.0271, PMid:18399734 Gong, Y., Ma, Z., Zhou, Q., Li, J., Gao, C., Shen, J., Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis (2008) Journal of Biomaterials Science: Polymer Edition, 19 (2), pp. 207-221. , http://dx.doi.org/10.1163/156856208783432453, PMid:18237493 Barauna, G., Coraça-Huber, D.C., Duek, E.A.R., Vitro degradation of Poly-L-co-D, L-lactic acid membranes (2013) Materials Research, 16 (1), pp. 221-226. , http://dx.doi.org/10.1590/S1516-14392012005000154 Coimbra, M.E., Elias, C.N., Coelho, P.G., Vitro degradation of poly-L-D-lactic acid (PLDLA) pellets and powder used as synthetic alloplasts for bone grafting (2008) Journal of Materials Science: Materials in Medicine, 19 (10), pp. 3227-3234. , http://dx.doi.org/10.1007/s10856-008-3425-2, PMid:18454304 Ikavalko, M., Skytta, E.T., Belt, E.A., One-year results of use of poly-L/D-lactic acid joint scaffolds and bone packing in revision metacarpophalangeal arthroplasty (2007) The Journal of Hand Surgery, European Volume, 32 (4), pp. 427-433. , http://dx.doi.org/10.1016/j.jhse.2007.03.006, PMid:17950198 Stares, S.L., Boehs, L., Fredel, M.C., Aragones, A., Duek, E.A.R., Self-reinforced bioresorbable polymer P (L/DL) LA 70:30 for the manufacture of craniofacial implant (2012) Polímeros, 22 (4), pp. 378-383. , http://dx.doi.org/10.1590/S0104-14282012005000056 Assaf, K., Duek, E.A.R., Oliveira, N.M., Efficacy of a combination of simvastatin and poly(DL-lactic-co-glycolic acid) in stimulating the regeneration of bone defects (2013) Materials Research., 16 (1), pp. 215-220. , http://dx.doi.org/10.1590/S1516-14392012005000159 Pulliainen, O., Vasara, A.I., Hyttinen, M.M., Tiitu, V., Valonen, P., Kellomaki, M., Poly-L-D-lactic acid scaffold in the repair of porcine knee cartilage lesions (2007) Tissue Engineering., 13 (6), pp. 1347-1355. , http://dx.doi.org/10.1089/ten.2006.0347, PMid:17518746 Esposito, A.R., Bonadio, A.C., Pereira, N.O., Cardoso, T.P., Barbo, M.L.P., Duek, E.A.R., The use of PLDLA/PCL-T scaffold to repair osteochondral defects in vivo (2013) Materials Research, 16 (1), pp. 105-115. , http://dx.doi.org/10.1590/S1516-14392012005000155 Kangas, J., Pajala, A., Leppilahti, J., Ryhanen, J., Lansman, S., Tormala, P., Histomorphometric analysis of poly-L/D-lactide 96/4 sutures in the gastrocnemius tendon of rabbits (2006) The International Journal of Artificial Organs., 29 (9), pp. 893-899. , PMid:17033997 Barauna, G.S., Pierucci, A., De Oliveira, A., Duarte, M.A.T., Duek, E., Estudo da degradação in vivo de poli(L-co-D,L-ácido lático) aplicado como prótese para regeneração nervosa periférica (2007) Revista Matéria., 12 (2), pp. 298-306 Langer, R., Vacanti, J.P., Tissue engineering (1993) Science., 260 (5110), pp. 920-926. , http://dx.doi.org/10.1126/science.8493529, PMid:8493529 Santos, Jr.A.R., Ferreira, B.M., Duek, E.A., Dolder, H., Wada, R.S., Wada, M.L., Differentiation pattern of Vero cells cultured on poly(L-lactic acid)/poly(hydroxybutyrate-co-hydroxyvalerate) blends (2004) Artificial Organs., 28 (4), pp. 381-389. , http://dx.doi.org/10.1111/j.1525-1594.2004.47199.x, PMid:15084200 Wu, Y.C., Shaw, S.Y., Lin, H.R., Lee, T.M., Yang, C.Y., Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds (2006) Biomaterials., 27 (6), pp. 896-904. , http://dx.doi.org/10.1016/j.biomaterials.2005.07.002, PMid:16125224 Gugala, Z., Gogolewski, S., Differentiation, growth and activity of rat bone marrow stromal cells on resorbable poly(L/DL-lactide) membranes (2004) Biomaterials., 25 (12), pp. 2299-2307. , http://dx.doi.org/10.1016/j.biomaterials.2003.09.009, PMid:14741595 Bet, M.R., Goissis, G., Vargas, S., Selistre-De-Araujo, H.S., Cell adhesion and cytotoxicity studies over polyanionic collagen surfaces with variable negative charge and wettability (2003) Biomaterials., 24 (1), pp. 131-137. , http://dx.doi.org/10.1016/S0142-9612(02)00270-00273 Ishaug-Riley, S.L., Crane-Kruger, G.M., Yaszemski, M.J., Mikos, A.G., Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers (1998) Biomaterials, 19 (15), pp. 1405-1412. , http://dx.doi.org/10.1016/S0142-9612(98)00021-0 Barbanti, S.H., Santos, Jr.A.R., Zavaglia, C.A., Duek, E.A., Porous and dense poly(L-lactic acid) and poly(D,L-lactic acid-co-glycolic acid) scaffolds: In vitro degradation in culture medium and osteoblasts culture (2004) Journal of Materials Science: Materials in Medicine, 15 (12), pp. 1315-1321. , http://dx.doi.org/10.1007/s10856-004-5740-6, PMid:15747184 Shi, X., Sitharaman, B., Pham, Q.P., Liang, F., Wu, K., Edward Billups, W., Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering (2007) Biomaterials., 28 (28), pp. 4078-4090. , http://dx.doi.org/10.1016/j.biomaterials.2007.05.033, PMid:17576009 PMCid:PMC3163100 Helen, W., Merry, C.L., Blaker, J.J., Gough, J.E., Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass composite foam scaffolds: Assessment of cell attachment, proliferation and extracellular matrix production (2007) Biomaterials, 28 (11), pp. 2010-2020. , http://dx.doi.org/10.1016/j.biomaterials.2007.01.011, PMid:17250887 Oliveira, A.L., Malafaya, P.B., Costa, S.A., Sousa, R.A., Reis, R.L., Micro-computed tomography (micro-CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds (2007) Journal of Materials Science: Materials in Medicine., 18 (2), pp. 211-223. , http://dx.doi.org/10.1007/s10856-006-0683-8, PMid:17323152 Salgado, A.J., Figueiredo, J.E., Coutinho, O.P., Reis, R.L., Biological response to pre-mineralized starch based scaffolds for bone tissue engineering (2005) Journal of Materials Science: Materials in Medicine, 16 (13), pp. 267-275. , http://dx.doi.org/10.1007/s10856-005-6689-9, PMid:15744619 Hall, B.K., Miyake, T., The membranous skeleton: The role of cell condensations in vertebrate skeletogenesis (1992) Anatomy and Embryology., 186 (2), pp. 107-124. , http://dx.doi.org/10.1007/BF00174948, PMid:1510240 Lombello, C.B., Santos, Jr.A.R., Malmonge, S.M., Barbanti, S.H., Wada, M.L., Duek, E.A., Adhesion and morphology of fibroblastic cells cultured on different polymeric biomaterials (2002) Journal of Materials Science: Materials in Medicine, 13 (9), pp. 867-874. , http://dx.doi.org/10.1023/A:1016552413295, PMid:15348552 Pelaez-Vargas, A., Gallego-Perez, D., Magallanes-Perdomo, M., Fernandes, M.H., Hansford, D.J., De Aza, A.H., Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants (2011) Dental Materials., 27 (6), pp. 581-589. , http://dx.doi.org/10.1016/j.dental.2011.02.014, PMid:21459429 Pelaez-Vargas, A., Gallego-Perez, D., Ferrell, N., Fernandes, M.H., Hansford, D., Monteiro, F.J., Early spreading and propagation of human bone marrow stem cells on isotropic and anisotropic topographies of silica thin films produced via microstamping (2010) Microscopy and Microanalysis., 16 (6), pp. 670-676. , http://dx.doi.org/10.1017/S1431927610094158, PMid:20964878 Carvalho, A., Pelaez-Vargas, A., Gallego-Perez, D., Grenho, L., Fernandes, M.H., De Aza, A.H., Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration (2012) Dental Materials., 28 (12), pp. 1250-1260. , http://dx.doi.org/10.1016/j.dental.2012.09.002, PMid:23026648 Mata, A., Kim, E.J., Boehm, C.A., Fleischman, A.J., Muschler, G.F., Roy, S., A three-dimensional scaffold with precise micro-architecture and surface micro-textures (2009) Biomaterials, 30 (27), pp. 4610-4617. , http://dx.doi.org/10.1016/j.biomaterials.2009.05.0232014;17(1)15, PMid:19524292 PMCid:PMC3677580