dc.creatorYu R.H.
dc.creatorZhang X.X.
dc.creatorTejada J.
dc.creatorZhu J.
dc.creatorKnobel M.
dc.date1996
dc.date2015-06-26T17:03:58Z
dc.date2015-11-26T14:19:29Z
dc.date2015-06-26T17:03:58Z
dc.date2015-11-26T14:19:29Z
dc.date.accessioned2018-03-28T21:20:57Z
dc.date.available2018-03-28T21:20:57Z
dc.identifier
dc.identifierJournal Of Applied Physics. , v. 79, n. 4, p. 1979 - 1990, 1996.
dc.identifier218979
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0002550683&partnerID=40&md5=3201e81c9a265d8b604248bbe306f42b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/95690
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/95690
dc.identifier2-s2.0-0002550683
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243954
dc.descriptionWe report a comprehensive investigation of structural, magnetic, and transport properties of as-quenched and annealed CoxCu1-x (0≤x≤0.20) granular alloys prepared by melt spinning. Using x-ray diffraction, differential scanning calorimetry measurements, and magnetic characterization, we have uncovered a Co phase separation process which results in the variation of magnetic and transport properties of Co-Cu heterogeneous alloys. In the Co composition range (0≤x≤0.15), the maximum giant magnetoresistance (GMR) was observed for CoCu samples annealed at 450 °C for 30 min, where Co particle diameters are in the range of 3.5-4.5 nm. The variation of magnetic and transport properties with the concentration and size of precipitated Co clusters is discussed, and is consistent with the prediction of the two-channel model, in which spin-dependent scattering is dominated by the cluster-matrix interfaces. The reduction of GMR in high Co concentration is attributed to the appearance of magnetic coupling among magnetic particles. In contrast, very small particles tend to behave superparamagnetically, resulting in the reduction of the ratio of spin-dependent scattering to spin-independent scattering potentials, and thus in the reduction of the GMR effect. © 1996 American Institute of Physics.
dc.description79
dc.description4
dc.description1979
dc.description1990
dc.descriptionBaibich, M.N., Broto, J.M., Pert, A., Van Nguyen Dau, F., Petroff, F., Etienne, P., Creuzel, G., Chazeles, J., (1988) Phys. Rev. Lett., 61, p. 2472
dc.descriptionBonasch, G., Grunberg, P., Saurenbach, F., Zinn, W., (1989) Phys. Rev. B, 39, p. 4828
dc.descriptionParkin, S.S.P., More, N., Roche, K.P., (1990) Phys. Rev. Lett., 64, p. 2304
dc.descriptionBerkowitz, A.E., Mitchel, J.R., Carey, M.J., Young, A.P., Zhang, S., Spada, F.E., Parker, F.T., Thomas, G., (1992) Phys. Rev. Lett., 69, p. 3745
dc.descriptionXiao, J.Q., Jiang, J.S., Chien, C.L., (1992) Phys, Rev. Lett., 68, p. 3749
dc.descriptionCarmley, R.E., Barnas, J., (1989) Phys. Rev. Lett., 63, p. 664
dc.descriptionLevy, P.M., Zhang, S., Pert, A., (1990) Phys. Rev. Lett., 65, p. 1643
dc.descriptionZhang, S., (1992) Appl. Phys. Lett., 61, p. 1855
dc.descriptionZhang, S., Levy, P.M., (1993) J. Appl. Phys., 73, p. 5315
dc.descriptionRabedeau, T.A., Toney, M.F., Marks, R.F., Parkin, S.S.P., Farrow, R.F.C., Harp, G.R., (1993) Phys. Rev. B, 48, p. 16810
dc.descriptionNishizawa, T., Ishida, K., (1984) Bull. Alloys Phase Diagrams, 5, p. 161
dc.descriptionChildress, J.R., Chien, C.L., (1991) Phys. Rev. B, 43, p. 8089
dc.descriptionGente, C., Oehring, M., Bormann, R., (1993) Phys. Rev. B, 48, p. 13244
dc.descriptionWecker, J., Von Helmolt, R., Schultz, L., Samwer, K., (1993) Appl. Phys. Lett., 62, p. 1985
dc.descriptionDieny, B., Chamberod, A., Cowache, C., Genin, J.B., Teixeira, S.R., Ferre, R., Barbara, B., (1994) J. Magn. Magn. Mater., 135, p. 191
dc.descriptionRubinstein, M., Harris, V.G., Das, B.N., Koon, N.C., (1994) Phys. Rev. B, 50, p. 12550
dc.descriptionCrangle, J., (1955) Philos. Mag., 46, p. 499
dc.descriptionChildress, J.R., Chien, C.L., (1991) J. Appl. Phys., 70, p. 5885
dc.descriptionBean, C.P., Livingston, J.D., (1959) J. Appl. Phys., 32, pp. 120S
dc.descriptionKhanna, S.N., Linderoth, S., (1991) Phys. Rev. Lett., 67, p. 742
dc.descriptionGranqivst, C.G., Burmann, R.A., (1976) Solid State Commun., 18, p. 123
dc.descriptionChantrell, R.W., Wohlfarth, E.P., (1983) J. Magn. Magn. Mater., 40, p. 1
dc.descriptionSucksmith, W.A., Thompson, J.E., (1954) Proc. R. Soc. London, Ser. A, 225, p. 362
dc.descriptionDoyle, W.D., Flanders, P.J., (1964) Proceedings of the International Conference on Magnetism, p. 751. , Nottingham. England, unpublished
dc.descriptionWohlfarth, E.P., (1979) Phys. Lett. A, 70, p. 489
dc.descriptionWohlfarth, E.P., (1980) J. Phys. F, 10, pp. L241
dc.descriptionMattson, J.E., Brubacker, M.E., Sowers, C.H., Conover, M., Qiu, Z., Bader, S.D., (1991) Phys. Rev. B, 44, p. 9378
dc.descriptionPetroff, F., Barthelamy, A., Hamzic, A., Fert, A., Etienne, P., Lequien, S., Creuzet, G., (1991) J. Magn. Magn. Mater., 93, p. 95
dc.descriptionGijs, M.A.M., Lenczowski, S.K.J., Van De Veerdonk, R.J.M., Giesbers, J.B., Johnson, M.T., Aan De Stegee, J.B.F., (1994) Phys. Rev. B, 50, p. 16733
dc.descriptionParkin, S.S.P., Bhada, R., Roche, K.P., (1991) Phys. Rev. Lett., 64, p. 2304
dc.descriptionGoldstein, Y., Gittleman, J.L., (1971) Solid State Commun., 9, p. 1197
dc.descriptionHickey, B.J., Howson, M.A., Musa, S.O., Wiser, N., (1995) Phys. Rev. B, 51, p. 667
dc.descriptionWang, J.Q., Xiao, G., (1994) Phys. Rev. B, 49, p. 3982
dc.descriptionYu, R.H., Zhang, X.X., Tejada, J., Knobel, M., Tiberto, P., Allia, P., (1995) J. Phys. Condensed Matter, 7, p. 4081
dc.descriptionYu, R.H., Zhang, X.X., Tejada, J., Knobel, M., Tiberto, P., Allia, P., (1995) Z. Phys. B Condensed Matter, 7, p. 447
dc.descriptionYu, R.H., Zhang, X.X., Tejada, J., Knobel, M., Tiberto, P., Allia, P., (1995) J. Appl. Phys., 78, p. 392
dc.languageen
dc.publisher
dc.relationJournal of Applied Physics
dc.rightsaberto
dc.sourceScopus
dc.titleStucture, Magnetic Properties, And Gaint Magnetoresistance In Melt-spun Metallic Copper-cobalt Ribbons
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución