dc.creatorJacobi C.M.
dc.creatorLangevin R.
dc.date1996
dc.date2015-06-26T17:04:01Z
dc.date2015-11-26T14:19:22Z
dc.date2015-06-26T17:04:01Z
dc.date2015-11-26T14:19:22Z
dc.date.accessioned2018-03-28T21:20:50Z
dc.date.available2018-03-28T21:20:50Z
dc.identifier
dc.identifierJournal Of Experimental Marine Biology And Ecology. , v. 206, n. 1-2, p. 39 - 54, 1996.
dc.identifier220981
dc.identifier10.1016/S0022-0981(96)02605-6
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0030302565&partnerID=40&md5=05d0b5cbf4a5dcb200a4995dcbedc845
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/95699
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/95699
dc.identifier2-s2.0-0030302565
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243921
dc.descriptionThe effect of substratum complexity on the early stages of colonization by mobile epifauna was assessed through a comparative study based on the architecture of artificial substrata. We conducted field observations over 4 years, on six types of small plastic substrata placed in the low intertidal zone of an exposed rocky shore, for varied immersion periods (1, 2, 4 and 12 wk). The use of artificial substrata allowed us to manipulate independently structural and spatial features of the habitat, such as total area, amount of folds, intercepting area, total volume, and interstitial volume. The invertebrate fauna colonizing over 300 sample units was recorded, and their densities compared as a function of substrata type and immersion time. Microcrustaceans predominated during the initial stages in all substrata. In this category, harpacticoid copepods and amphipods were the most abundant taxa. The effect of the original substratum complexity seemed to be restricted to the early stages of colonization, since after 12 wk of immersion the original geometry was greatly modified by fouling organisms, particularly ascidians and epiphytic algae. The geometric characteristic that most influenced epifaunal composition and density was the substratum folding, a one-dimensional measure that evaluates the amount of filaments and folds in the substratum's surface. Folding was correlated with high faunal densities and high initial colonization rates, and proved to be a better density predictor than total substratum area, or volume. This correlation was especially well defined for amphipods.
dc.description206
dc.description1-2
dc.description39
dc.description54
dc.descriptionBarry, J.P., Dayton, P.K., Physical heterogeneity and the organization of marine communities (1991) Ecological Heterogeneity, pp. 270-320. , edited by J. Kolasa and S.T.A. Pickett, Springer-Verlag, New York
dc.descriptionBologna, P.A., Steneck, R.S., Kelp beds as habitat for American lobster Homarus americanus (1993) Mar. Ecol. Prog. Ser., 1 (X), pp. 127-134
dc.descriptionBourget, E., DeGuise, J., Daigle, G., Scales of substratum heterogeneity, structural complexity, and the early establishment of a marine epibenthic community (1994) J. Exp. Mar. Biol. Ecol., 181, pp. 31-51
dc.descriptionCaine, E.A., Caprellid amphipods: Fast food for the reproductively active (1991) J. Exp. Mar. Biol. Ecol., 148, pp. 27-33
dc.descriptionChapman, M.G., Underwood, A.J., Dispersal of the intertidal snail, Nodilittorina pyramidalis, in response to the topographic complexity of the substratum (1994) J. Exp. Mar. Biol. Ecol., 179, pp. 145-169
dc.descriptionClarke, R.D., Chance and order in determining fish-species composition on small coral patches (1988) J. Exp. Mar. Biol. Ecol., 115, pp. 197-212
dc.descriptionDean, T.A., Structural aspects of sessile invertebrates as organizing forces in an estuarine fouling community (1981) J. Exp. Mar. Biol. Ecol., 53, pp. 163-180
dc.descriptionDiamant, A., Bentuvia, A., Baranes, A., Golani, D., An analysis of rocky coastal eastern Mediterranean fish assemblages and a comparison with an adjacent small artificial reef (1986) J. Exp. Mar. Biol. Ecol., 97, pp. 269-285
dc.descriptionEdgar, G.J., The ecology of South-east Tasmaman phytal animal communities. I. Spatial organization on a local scale (1983) J. Exp. Mar. Biol. Ecol., 70, pp. 129-157
dc.descriptionFlecker, A.S., Allan, J.D., The importance of predation, substratum and spatial refugia in determining lotic insect distributions (1984) Oecologia, 64, pp. 306-313
dc.descriptionFranz, D.R., Mohamed, Y., Short-distance dispersal in a fouling community amphipod crustacean, Jassa marmorata Holmes (1989) J. Exp. Mar. Biol. Ecol., 133, pp. 1-13
dc.descriptionHacker, S.D., Steneck, R.S., Habitat architecture and the abundance and body-size-dependent habitat selection of a phytal amphipod (1990) Ecology, 71, pp. 2269-2285
dc.descriptionJohns, P.M., Mann, K.H., An observational investigation of juvenile lobster habitat preference and mortality among habitats of varying structural complexity (1987) J. Exp. Mar. Biol. Ecol., 109, pp. 275-285
dc.descriptionKaiser, H., Small scale spatial heterogeneity influences predation success in an unexpected way: Model observations on the functional response of predatory mites (Acarina) (1983) Oecologia, 56, pp. 249-256
dc.descriptionLangevin, R., (1980) Courbure Feuillages Et Surfaces (Mesure Et Distribution De Gauss), , Ph.D. dissertation, Université d'Orsay
dc.descriptionMiller, K.M., Carefoot, T.H., The role of spatial and size refuges in the interaction between juvenile barnacles and grazing limpets (1989) J. Exp. Mar. Biol. Ecol., 134, pp. 157-174
dc.descriptionMoore, P.G., Levels of heterogeneity and the amphipod fauna of kelp holdfasts (1985) The Ecology of Rocky Coasts, pp. 274-289. , edited by P.G. Moore and R. Seed, Hodder and Stoughton, Sevenoaks
dc.descriptionNavarrete, S.A., Castilla, J.C., Resource partitioning between intertidal predatory crabs: Interference and refuge utilization (1990) J. Exp. Mar. Biol. Ecol., 143, pp. 101-129
dc.descriptionNoodt, W., Ecology of copepods (1971) Smithsonian Contrib. Zool., 76, pp. 97-102
dc.descriptionO'Connor, N.A., The effects of habitat complexity on the macroinvertebrates colonising wood substrates in a lowland stream (1991) Oecologia, 85, pp. 504-512
dc.descriptionRobinson, J.V., The effect of architectural variation in habitat on a spider community: An observational field study (1981) Ecology, 62, pp. 73-80
dc.descriptionSantaló, L.A., Integral geometry and geometric probability (1976) Encyclopedia of Mathematics and Its Application, 1, p. 404. , edited by G-C. Rota, Addison-Wesley, Reading
dc.descriptionStoner, A.W., Perception and choice of substratum by epifaunal amphipods associated with seagrasses (1980) Mar. Ecol. Prog. Ser., 3, pp. 105-111
dc.descriptionStoner, A.W., Lewis F.G. III, The influence of quantitative and qualitative aspects of habitat complexity in tropical seagrass meadows (1985) J. Exp. Mar. Biol. Ecol., 94, pp. 19-40
dc.descriptionThistle, D., Reidenauer, J.A., Findlay, R.H., Waldo, R., An observational investigation of enhanced harpacticoid (Copepoda) abundance around isolated seagrass roots (1984) Oecologia, 63, pp. 295-299
dc.descriptionTsuchiya, M., Nishihira, M., Islands of Mytilus as a habitat for small intertidal animals: Effects of Mytilus age structure on the species composition of the associated fauna and community organization (1986) Mar. Ecol. Prog. Ser., 31, pp. 171-178
dc.descriptionVervier, P., A study of aquatic community dynamics in a karstic system by the use of artificial substrates (1990) Arch. Hydrobiol., 119, pp. 15-33
dc.languageen
dc.publisher
dc.relationJournal of Experimental Marine Biology and Ecology
dc.rightsfechado
dc.sourceScopus
dc.titleHabitat Geometry Of Benthic Substrata: Effects On Arrival And Settlement Of Mobile Epifauna
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución