dc.creatorMotta A.C.
dc.creatorDe Rezende Duek E.A.
dc.date2014
dc.date2015-06-25T17:52:42Z
dc.date2015-11-26T14:18:58Z
dc.date2015-06-25T17:52:42Z
dc.date2015-11-26T14:18:58Z
dc.date.accessioned2018-03-28T21:20:20Z
dc.date.available2018-03-28T21:20:20Z
dc.identifier
dc.identifierMaterials Research. Universidade Federal De Sao Carlos, v. 17, n. 3, p. 619 - 626, 2014.
dc.identifier15161439
dc.identifier10.1590/S1516-14392014005000067
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84906220196&partnerID=40&md5=dffa38303faaa8a249699dfebba552e7
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86321
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86321
dc.identifier2-s2.0-84906220196
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243797
dc.descriptionTerpolymers of L-lactide, D,L-lactide and trimethylene carbonate (TMC) were synthesized via the ring-opening polymerization reaction for cyclic monomers using stannous octoate as the initiator at a ratio of ~0.05 mol% (monomers/(SnOct)2). Synthesis was done at 130 °C for 48 h. The inclusion of TMC, an aliphatic elastomeric polycarbonate, alongside polymer chain segments containing L-lactide and D,L-lactide, was expected to yield a material with improved properties such as increased elongation; this would overcome the limitation of copolymers consisting entirely of lactide and D,L-lactide. The terpolymer properties were assessed by Nuclear magnetic resonance spectroscopy 1H and 13C NMR, infrared spectroscopy, differential scanning calorimetry and thermogravimetry, with particular attention being given to the effect of TMC on the copolymer of L-lactide-co-D,L-lactide. The mixing of these polymers resulted in material with a high molar mass (105 g/mol). The mechanical properties of the terpolymer were assessed using pins of this material that were tested by mechanical flexion at three points. When compared with results for the copolymer PLDLA there was a decrease in Young's modulus for the TMC-containing terpolymer.
dc.description17
dc.description3
dc.description619
dc.description626
dc.descriptionDavachi, S.M., Kaffashi, B., Roushandeh, J.M., Torabinejad, B., Investigating thermal degradation, crystallization and surface behavior of l-lactide, glycolide and trimethylene Carbonate terpolymers used for medical applications (2012) Materials Science and Engineering C, 32, pp. 98-104. , http://dx.doi.org/10.1016/j.msec.2011.10.001
dc.descriptionZurita, A., Puiggali, J., Franco, L., Rodriguez-Galan, A., Copolymerization of glycolide and trimethylene Carbonate (2006) Journal of Polymer Science Part A: Polymer Chemistry, 44 (2), pp. 993-1013. , http://dx.doi.org/10.1002/pola.21199
dc.descriptionPěgo, A.P., Siebum, B., Grijpma, D., Preparation of degradable porous structures based on 1,3-trimethylene Carbonate and d,l-lactide (co)polymers for heart tissue engineering (2003) Tissue Engineering, 9, pp. 981-993. , http://dx.doi.org/10.1089/107632703322495628, PMid:14633382
dc.descriptionCelorio, E.D., Franco, L., Gala, A.R., Puiggali, J., Preparation of degradable porous structures based on 1,3-trimethylene Carbonate and d,l-lactide (co)polymers for heart tissue engineering (2012) European Polymer Journal, 48, pp. 60-73. , http://dx.doi.org/10.1016/j.eurpolymj.2011.10.014
dc.descriptionStock, U.A., Vacanti, J.P., Tissue engineering: Current state and prospects (2001) Annual Review of Medicine, 52, p. 443. , http://dx.doi.org/10.1146/annurev.med.52.1.443, PMid:11160788
dc.descriptionWang, Y., Bella, E., Lee, C.S., Migliaresi, C., Pelcastre, L., Schwartz, Z., The synergistic effects of 3-d porous silk fibroin matrix scaffold properties and hydrodynamic environment in Cartilage tissue regeneration (2010) Biomaterials, 31 (17), pp. 4672-4681. , http://dx.doi.org/10.1016/j.biomaterials.2010.02.006, PMid:20303584
dc.descriptionCiambelli, G.S., Perez, M.O., Siqueira, G.V., Candella, M.A., Motta, A.C., Duarte, M.A., Characterization of poly (l-co-d,l lactic acid) and a study of polymer-tissue interaction in subcutaneous implants in wistar rats (2013) Materials Research, 16, pp. 28-37. , http://dx.doi.org/10.1590/S1516-14392012005000146
dc.descriptionMessias, A.D., Lucchesi, C., Coraça-Huber, D.C., Pavani Filho, A., Duek, E.A.R., Lithograph-moulded poly-l-co-d,l lactide porous membranes for osteoblastic culture (2014) Materials Research, 17 (1), pp. 7-15. , http://dx.doi.org/10.1590/S1516-14392013005000156
dc.descriptionStares, S.L., Boehs, L., Fredel, M.C., Aragoněs, A., Duek, E.A.R., Self-reinforced bioresorbable polymer p (l/dl) la 70:30 for the manufacture of craniofacial implant (2012) Polímeros, 22, pp. 378-383. , http://dx.doi.org/10.1590/S0104-14282012005000056
dc.descriptionBaraúna, G., Coraça-Huber, D.C., Duek, E.A.R., In vitro degradation of poly-l-co-d, l-lactic acid membranes (2012) Materials Research, 16, pp. 221-226. , http://dx.doi.org/10.1590/S1516-14392012005000154
dc.descriptionMotta, A.C., Duek, E.A.R., Síntese Caracterização e degradação in vitro do poli(lácido lático-co-d,l ácido glicólico (2006) Matéria, 11 (3), pp. 340-350. , http://dx.doi.org/10.1590/S1517-70762006000300024
dc.descriptionBaraúna, G.S., Pierucci, A., Oliveira, A., Duarte, M.A.T., Duek, E.A.R., Estudo da degradação in vivo" de poli(l-co-d,l- Ácido láctico) aplicado como prótese para regeneração nervosa periférica (2007) Matéria, 12, pp. 298-306. , http://dx.doi.org/10.1590/S1517-70762007000200008
dc.descriptionMotta, A.C., Duek, E.A.R., Síntese e Caracterização do copolímero poli (l-co-d,l ácido láctico (2007) Polímeros, 17, pp. 123-129. , http://dx.doi.org/10.1590/S0104-14282007000200011
dc.descriptionMotta, A.C., Síntese Caracterização de dispositivos de poli(l-co-dl ácido lático). Estudo da degradação in vitro" e "in vivo". [tese] (2007) Campinas, , Universidade Estadual de Campinas
dc.descriptionKim, J.K., Lee, J.H., Preparation and chain-extension of p(lla-b-tmc-b-lla) triblock copolymers and their elastomeric properties (2002) Macromolecular Research, 10 (2), pp. 54-59. , http://dx.doi.org/10.1007/BF03218290
dc.descriptionEngelberg, I., Kohn, J., Physico-mechanical properties of degradable polymers used in medical applications: A comparative study (1991) Biomaterials, 12 (3), pp. 292-304. , http://dx.doi.org/10.1016/0142-961291)90037-B
dc.descriptionMiddeleton, J.C., Tipton, A.J., Physico-mechanical properties of degradable polymers used in medical applications: A comparative study (2000) Biomaterials, 21, pp. 2335-2346. , http://dx.doi.org/10.1016/S0142-9612(0000101-0
dc.descriptionKrasowska, K., Heimowska, A., Rutkowska, M., Enzymatic and hydrolytic degradation of poly (-caprolactone) in natural environment (2006) Polimery, 51, pp. 21-26
dc.descriptionBuchholz, B., Analysis and characterization of resorbable dl-lactide-trimethylene Carbonate copolyesters (1993) Journal of Materials Science: Materials in Medicine, 4, pp. 381-388. , http://dx.doi.org/10.1007/BF00122196
dc.descriptionMatsumura, S., Tsukada, K., Toshima, K., Novel lipase-catalyzed ring-opening copolymerization of lactide and trimethylene Carbonate forming poly(ester Carbonate)s (1999) International Journal of Biological Macromolecules, 25 (1-3), pp. 161-167. , http://dx.doi.org/10.1016/S0141-8130(9900030-6
dc.descriptionGrijpma, D.W., Pennings, A.J., Co polymers of L-lactide Synthesis thermal properties and hydrolytic degradation (1994) Macromolecular Chemistry and Physics, 195, p. 1633. , http://dx.doi.org/10.1002/macp.1994.021950515
dc.descriptionStorey, R.F., Hickey, T.P., Methacrylate-endcapped poly(d,l-lactide-co-trimethylene Carbonate) oligomers. Network formation by thermal free-radical curing (1997) Polymer, 38, pp. 6295-6301. , http://dx.doi.org/10.1016/S0032-3861(9700208-5
dc.descriptionPaturej, M., Fray, M.E., Syntheses of new poly(ester-carbonate-urethane)s based on trimethylene Carbonate (tmc) and polyester polyol derived from dimerized fatty acid (2009) Polimery, 54, pp. 610-617
dc.descriptionShen, Y., Shen, Z., Zhang, Y., Yao, K., Novel rare earth Catalysts for the living polymerization and block copolymerization of β-caprolactone (1996) Macromolecules, 29, pp. 8289-8295. , http://dx.doi.org/10.1021/ma9518060
dc.descriptionAlbertsson, A.C., Liu, Y., Comparison between physical blending and copolymerization of poly(trimethylene Carbonate) and poly(adipic anhydride) with special regard to compatibility, morphology, and degradation (1997) Journal of Macromolecular Science: Pure and Applied Chemistry, A34 (8), pp. 1457-1482. , http://dx.doi.org/10.1080/10601329708011056
dc.descriptionNomura, R., Kori, M., Matsuda, H., Copolymerization of cyclic imines and cyclic Carbonates in the presence of triethylamine -phosphine or -stibine (1988) Macromolecular Chemistry and Physics, 9, pp. 739-742
dc.descriptionJerome, C., Lecomte, P., Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization (2008) Advanced Drug Delivery Reviews, 60, pp. 1056-1076. , http://dx.doi.org/10.1016/j.addr.2008.02.008, PMid:18403043
dc.descriptionAlbertsson, A.C., Varma, I.K., Recent developments in ring opening polymerization of lactones for biomedical applications (2003) Biomacromolecules, 4, pp. 1466-1486. , http://dx.doi.org/10.1021/bm034247a, PMid:14606869
dc.descriptionFernandez, J., Etxeberria, A., Sarasua, J.R., Synthesis, structure and properties of poly(l-lactide-co-β- caprolactone) statistical copolymers (2012) Journal of the Mechanical Behavior of Biomedical Materials, 9, pp. 100-112. , http://dx.doi.org/10.1016/j.jmbbm.2012.01.003, PMid:22498288
dc.descriptionOepen, V., Michaeli, W., Injection moulding of biodegradable implants (1992) Clinical Materials, 10, pp. 21-28. , http://dx.doi.org/10.1016/0267-660592)90080-D
dc.descriptionGogolewski, S., Jovanoviv, M., The effect of melt-processing on the degradation of selected polyhydroxyacids: Polylactides, polyhydroxybutyrate, and polyhydroxybutyrate-co- valerates (1993) Polymer Degradation and Stability, 40, pp. 313-322. , http://dx.doi.org/10.1016/0141-3910(9390137-8
dc.descriptionRaul, Z., Jordi, P., Alfonso, R.G., Triclosan release from coated polyglycolide threads (2006) Macromolecular Bioscience, 6, pp. 58-69. , http://dx.doi.org/10.1002/mabi.200500147, PMid:16374771
dc.descriptionPospiech, D., Komber, H., Jehnichen, D., Multiblock copolymers of l-lactide and trimethylene Carbonate (2005) Biomacromolecules, 6, pp. 439-446. , http://dx.doi.org/10.1021/bm049393a, PMid:15638550
dc.descriptionThakur, K., Kean, R., Hall, E., Kolstad, J., Lindgren, T., Doscotch, M., High-resolution 13c and 1h solution nmr study of poly(lactide (1997) Macromolecules, 30, p. 2422. , http://dx.doi.org/10.1021/ma9615967
dc.descriptionOkada, T., Imamura, Y., Matsuda, T., Polymerization of trimethylene Carbonate in aqueous solutions: Reaction mechanism and characterization (2010) Polymer Chemistry, pp. 1485-1492
dc.descriptionRuckenstein, E., Yuan, Y., Molten ring-open copolymerization of l-lactide and cyclic trimethylene Carbonate (1998) Journal of Applied Sciene, 69, pp. 1429-1434. , http://dx.doi.org/10.1002/(SICI)1097-4628(19980815)6971429::AID-APP183.0. CO;2-O
dc.descriptionPěgo, A.P., (2002) Biodegradable Polymers Based on Trimethylene Carbonate for Tissue Engineering Applications, , [Dissertation]. Enschede: University of Twente
dc.descriptionAlbertsson, A.C., Eklund, M., Synthesis of copolymers of 1,3-dioxan-2-one and oxepan-2-one using coordination Catalysts (1994) Journal of Polymer Science Part A: Polymer Chemistry, 32, pp. 265-279. , http://dx.doi.org/10.1002/pola.1994.080320207
dc.languageen
dc.publisherUniversidade Federal de Sao Carlos
dc.relationMaterials Research
dc.rightsaberto
dc.sourceScopus
dc.titleSynthesis And Characterization Of A Novel Terpolymer Based On L-lactide, D,l-lactide And Trimethylene Carbonate
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución