| dc.creator | Duarte E.R. | |
| dc.creator | Ender L. | |
| dc.creator | Maciel Filho R. | |
| dc.date | 2006 | |
| dc.date | 2015-06-30T18:03:12Z | |
| dc.date | 2015-11-26T14:18:43Z | |
| dc.date | 2015-06-30T18:03:12Z | |
| dc.date | 2015-11-26T14:18:43Z | |
| dc.date.accessioned | 2018-03-28T21:20:00Z | |
| dc.date.available | 2018-03-28T21:20:00Z | |
| dc.identifier | 0816910057; 9780816910052 | |
| dc.identifier | Aiche Annual Meeting, Conference Proceedings. , v. , n. , p. - , 2006. | |
| dc.identifier | | |
| dc.identifier | | |
| dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-77953028171&partnerID=40&md5=556a30040c9a71c365726d07e5a2a9b1 | |
| dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/102855 | |
| dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/102855 | |
| dc.identifier | 2-s2.0-77953028171 | |
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1243716 | |
| dc.description | The aim of this work is to evaluate the performance of a non linear control strategy based on Artificial Neural Networks (ANN's) for an extractive alcoholic fermentation process (MIMO 3x3). The process is simulated through a validated deterministic model which takes into account the main phenomena taking place in the system. The control is build-up by a multilayered and multivariable ANN that represents the inverse dynamics of the system, which is on-line trained through an optimization routine. The optimization routine adjusts the weight of neural controller using the estimate global error of closed loop. The global error is obtained using a dynamic model of the process, to represent a prediction for the next sampling time. This process model is on-line trained with the process data. The obtained results have shown the efficiency of control strategy in multivariable system and the potential of proposed on-line learning. | |
| dc.description | | |
| dc.description | | |
| dc.description | | |
| dc.description | | |
| dc.description | Bhat, N., Use of neural nets for dynamic modeling and control of chemical process systems (1990) Comput. Chem. Eng, 14, pp. 573-582. , & McAvoy | |
| dc.description | Andrietta SR, Maugeri F.(1994). Optimum Design of a Continuous Fermentation Unit of an Industrial Plant for Alcohol Production. Adv. Bioprocess Eng., 47-52Atala, D.I.P., Costa, A.C., Maciel Filho, R., Maugeri, F., Kinetics of Ethanol Fermentation with High Biomass Concentration Considering the Effect of Temperature (2001) Applied Biochemistry and Biotechnology, 91, pp. 353-365 | |
| dc.description | Bhat, N., McAvoy, T., Use of neural nets for dynamic modeling and control of chemical systems (1990) Computers & Chemical Engineering, 14, pp. 573-582 | |
| dc.description | Bulsari, A.B., (1995) Neural Networks for Chemical Engineers, , Amsterdam: Elsevier | |
| dc.description | Christen, M., Minier, M., Renon, H., Ethanol extraction by supported liquid membrane during fermentation (1990) Biotechnol. Biong, 3, pp. 116-123 | |
| dc.description | Cybeko, G., Approximation by superposition of a sigmoidal function (1989) Mathematics of Control Signals and Systems, 2, pp. 303-314 | |
| dc.description | Costa, A.C., Atala, D.I.P., Maciel Filho, R., Maugeri Filho, F., Factorial Design and simulation for the Optimization and Determination of Control Structures for an Extractive Alcoholic Fermentation (2001) Process Biochemistry, 37 (2), pp. 125-137 | |
| dc.description | Duarte, E.R., (2004) Estratégia de Controle Não Linear Baseada em Redes Neurais Artificiais com Aprendizagem "On-line", , Msc. Thesis. Brasil | |
| dc.description | Ender, L., Maciel Filho, R., Design of multivariable controller based on neural networks (2000) Computers & Chemical Engineering, 24, pp. 937-943 | |
| dc.description | Fissore, D., Barresi, A.A., Manca, D., Modelling of methanol synthesis in a network of forced unsteady-state ring reactors by artificial neural networks for control pusposes (2004) Chemical Engineering Science, 59, pp. 4033-4041 | |
| dc.description | Hecht-Nielsen, R., (1989) Neurocomputing, , Addisin-Wesley Publishing Company, Reading, MA | |
| dc.description | Hérnandez, E., Arkun, Y., A study of control relevant properties of back-propagation neural netwok models of nonlinear dynamical system (1992) Computers &Chemical Engineering, 16, pp. 227-240 | |
| dc.description | Henson, M.A., Non-linear model predictive control: Current status and future directions (1998) Computers & Chemical engineering, 23, pp. 87-202 | |
| dc.description | Hunt, K.J., Sbarbaro, D., Neural networks for nonlinear internal model control (1992) IEE Proceedings, 138 (PART D), pp. 341-348 | |
| dc.description | Ishida K. and Shimizu K. (1996). Novel repeated batch operation for flash fermentation system: experimental data and mathematical modeling. Journal of Chem. Technol. Biotechnol. 66, 340-346Jutan, A., Krishnapura, V.G., A neural adaptive controller (2000) Chemical Engineering Sciense, 55, pp. 3803-3812 | |
| dc.description | Jimenez-Marquez, S.A., Thibault, J., Lacroix, C., (2004) Prediction of moisture in cheese of commercial production using neural networks, , International Dairy Journal | |
| dc.description | Maiorella, B.L., Blanch, H.W., Wilke, C.R., Biotechonology report - Economic evaluation of alternative ethanol fermentation processes (1984) Biotechnol. Bioeng, 26, pp. 1003-1025 | |
| dc.description | Mjali, F.S., Neural network model-based predictive control of liquid-liquid extraction contactors (2005) Chemical Engineering Sciense, 60, pp. 239-253 | |
| dc.description | Meleiro, L.A.C., Maciel Filho, R., Campello, R.J.G.B., Amaral, W.C., (2001) Application of Neural Networks and Other Learning Technologies in Process Engineering, Imperial College Press, Capítulo: Hierarchical Neural Fuzzy Models as a Tool for Process Identification: A Bioprocess Aplication | |
| dc.description | Minier, M., Goma, G., Ethanol production by extractive fermentation (1982) Biotechnol. Bioeng, 24, pp. 1565-1579 | |
| dc.description | Psichogios, D.C., Ungar, L.H., Direct and Indirect Model based on Control Using Artificial Networks (1991) Industrial Engineering & Chemical Research, 30, pp. 2564-2573 | |
| dc.description | Sarkar, D., Modak, J.M., ANNSA: A hybrid artificial neural network / simulated annealing algorithm for optimal control problems (2003) Chemical Engineering Science, 58, pp. 3131-3142 | |
| dc.description | Silva, F.L.H., Rodrigues, M.I., Maugeri, F., Dynamic Modeling, Simulation and Optimization of an Extractive Continuous Alcoholic Fermentation (1999) Journal Chem. Tech. Biotechnol, 74 (2), pp. 176-182 | |
| dc.description | Taylor F. Kurantz M. J., Goldberg N., Craig J. C. (1998). Kinetics of continuous fermentation and stripping of ethanol. Bioechnol. Lett, 20, 67-72Ungar, L.H., Powell, B.A., Kamens, S.N., Adaptive networks for fault diagnosis and process control (1990) Computers & Chemical Engineering, 14, pp. 561-572 | |
| dc.language | en | |
| dc.publisher | | |
| dc.relation | AIChE Annual Meeting, Conference Proceedings | |
| dc.rights | fechado | |
| dc.source | Scopus | |
| dc.title | Advanced Control Strategy To A Fermentation Process To Obtain Ethanol | |
| dc.type | Actas de congresos | |