dc.creatorDuarte E.R.
dc.creatorEnder L.
dc.creatorMaciel Filho R.
dc.date2006
dc.date2015-06-30T18:03:12Z
dc.date2015-11-26T14:18:43Z
dc.date2015-06-30T18:03:12Z
dc.date2015-11-26T14:18:43Z
dc.date.accessioned2018-03-28T21:20:00Z
dc.date.available2018-03-28T21:20:00Z
dc.identifier0816910057; 9780816910052
dc.identifierAiche Annual Meeting, Conference Proceedings. , v. , n. , p. - , 2006.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-77953028171&partnerID=40&md5=556a30040c9a71c365726d07e5a2a9b1
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102855
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102855
dc.identifier2-s2.0-77953028171
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243716
dc.descriptionThe aim of this work is to evaluate the performance of a non linear control strategy based on Artificial Neural Networks (ANN's) for an extractive alcoholic fermentation process (MIMO 3x3). The process is simulated through a validated deterministic model which takes into account the main phenomena taking place in the system. The control is build-up by a multilayered and multivariable ANN that represents the inverse dynamics of the system, which is on-line trained through an optimization routine. The optimization routine adjusts the weight of neural controller using the estimate global error of closed loop. The global error is obtained using a dynamic model of the process, to represent a prediction for the next sampling time. This process model is on-line trained with the process data. The obtained results have shown the efficiency of control strategy in multivariable system and the potential of proposed on-line learning.
dc.description
dc.description
dc.description
dc.description
dc.descriptionBhat, N., Use of neural nets for dynamic modeling and control of chemical process systems (1990) Comput. Chem. Eng, 14, pp. 573-582. , & McAvoy
dc.descriptionAndrietta SR, Maugeri F.(1994). Optimum Design of a Continuous Fermentation Unit of an Industrial Plant for Alcohol Production. Adv. Bioprocess Eng., 47-52Atala, D.I.P., Costa, A.C., Maciel Filho, R., Maugeri, F., Kinetics of Ethanol Fermentation with High Biomass Concentration Considering the Effect of Temperature (2001) Applied Biochemistry and Biotechnology, 91, pp. 353-365
dc.descriptionBhat, N., McAvoy, T., Use of neural nets for dynamic modeling and control of chemical systems (1990) Computers & Chemical Engineering, 14, pp. 573-582
dc.descriptionBulsari, A.B., (1995) Neural Networks for Chemical Engineers, , Amsterdam: Elsevier
dc.descriptionChristen, M., Minier, M., Renon, H., Ethanol extraction by supported liquid membrane during fermentation (1990) Biotechnol. Biong, 3, pp. 116-123
dc.descriptionCybeko, G., Approximation by superposition of a sigmoidal function (1989) Mathematics of Control Signals and Systems, 2, pp. 303-314
dc.descriptionCosta, A.C., Atala, D.I.P., Maciel Filho, R., Maugeri Filho, F., Factorial Design and simulation for the Optimization and Determination of Control Structures for an Extractive Alcoholic Fermentation (2001) Process Biochemistry, 37 (2), pp. 125-137
dc.descriptionDuarte, E.R., (2004) Estratégia de Controle Não Linear Baseada em Redes Neurais Artificiais com Aprendizagem "On-line", , Msc. Thesis. Brasil
dc.descriptionEnder, L., Maciel Filho, R., Design of multivariable controller based on neural networks (2000) Computers & Chemical Engineering, 24, pp. 937-943
dc.descriptionFissore, D., Barresi, A.A., Manca, D., Modelling of methanol synthesis in a network of forced unsteady-state ring reactors by artificial neural networks for control pusposes (2004) Chemical Engineering Science, 59, pp. 4033-4041
dc.descriptionHecht-Nielsen, R., (1989) Neurocomputing, , Addisin-Wesley Publishing Company, Reading, MA
dc.descriptionHérnandez, E., Arkun, Y., A study of control relevant properties of back-propagation neural netwok models of nonlinear dynamical system (1992) Computers &Chemical Engineering, 16, pp. 227-240
dc.descriptionHenson, M.A., Non-linear model predictive control: Current status and future directions (1998) Computers & Chemical engineering, 23, pp. 87-202
dc.descriptionHunt, K.J., Sbarbaro, D., Neural networks for nonlinear internal model control (1992) IEE Proceedings, 138 (PART D), pp. 341-348
dc.descriptionIshida K. and Shimizu K. (1996). Novel repeated batch operation for flash fermentation system: experimental data and mathematical modeling. Journal of Chem. Technol. Biotechnol. 66, 340-346Jutan, A., Krishnapura, V.G., A neural adaptive controller (2000) Chemical Engineering Sciense, 55, pp. 3803-3812
dc.descriptionJimenez-Marquez, S.A., Thibault, J., Lacroix, C., (2004) Prediction of moisture in cheese of commercial production using neural networks, , International Dairy Journal
dc.descriptionMaiorella, B.L., Blanch, H.W., Wilke, C.R., Biotechonology report - Economic evaluation of alternative ethanol fermentation processes (1984) Biotechnol. Bioeng, 26, pp. 1003-1025
dc.descriptionMjali, F.S., Neural network model-based predictive control of liquid-liquid extraction contactors (2005) Chemical Engineering Sciense, 60, pp. 239-253
dc.descriptionMeleiro, L.A.C., Maciel Filho, R., Campello, R.J.G.B., Amaral, W.C., (2001) Application of Neural Networks and Other Learning Technologies in Process Engineering, Imperial College Press, Capítulo: Hierarchical Neural Fuzzy Models as a Tool for Process Identification: A Bioprocess Aplication
dc.descriptionMinier, M., Goma, G., Ethanol production by extractive fermentation (1982) Biotechnol. Bioeng, 24, pp. 1565-1579
dc.descriptionPsichogios, D.C., Ungar, L.H., Direct and Indirect Model based on Control Using Artificial Networks (1991) Industrial Engineering & Chemical Research, 30, pp. 2564-2573
dc.descriptionSarkar, D., Modak, J.M., ANNSA: A hybrid artificial neural network / simulated annealing algorithm for optimal control problems (2003) Chemical Engineering Science, 58, pp. 3131-3142
dc.descriptionSilva, F.L.H., Rodrigues, M.I., Maugeri, F., Dynamic Modeling, Simulation and Optimization of an Extractive Continuous Alcoholic Fermentation (1999) Journal Chem. Tech. Biotechnol, 74 (2), pp. 176-182
dc.descriptionTaylor F. Kurantz M. J., Goldberg N., Craig J. C. (1998). Kinetics of continuous fermentation and stripping of ethanol. Bioechnol. Lett, 20, 67-72Ungar, L.H., Powell, B.A., Kamens, S.N., Adaptive networks for fault diagnosis and process control (1990) Computers & Chemical Engineering, 14, pp. 561-572
dc.languageen
dc.publisher
dc.relationAIChE Annual Meeting, Conference Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleAdvanced Control Strategy To A Fermentation Process To Obtain Ethanol
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución