dc.creatorDurrant L.R.
dc.date1996
dc.date2015-06-26T17:02:55Z
dc.date2015-11-26T14:18:29Z
dc.date2015-06-26T17:02:55Z
dc.date2015-11-26T14:18:29Z
dc.date.accessioned2018-03-28T21:19:46Z
dc.date.available2018-03-28T21:19:46Z
dc.identifier
dc.identifierApplied Biochemistry And Biotechnology - Part A Enzyme Engineering And Biotechnology. , v. 57-58, n. , p. 399 - 406, 1996.
dc.identifier2732289
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-26844555411&partnerID=40&md5=419b31b0905c8c7f7ae6f8b4e062f693
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/95497
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/95497
dc.identifier2-s2.0-26844555411
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243653
dc.descriptionThe present work examines the production of ethanol via direct fermentation of pure celluloses and lignocellulosic wastes by two soil fungi isolated under anaerobic conditions. The strains were cultured on a defined medium containing filter paper slurry as the carbon source under anaerobic, microaerophilic, and aerobic conditions. After complete degradation of the cellulose, lignocellulases and fermentation products were determined. Highest activities for Trichocladium canadense (strain Q10) and the basidiomycete strain (strain H2), were obtained when cultures were incubated under microaerophilic conditions and air, respectively. Laccase activity was present in the culture supernatants of both strains, but peroxidase was only produced by strain H2. Ethanol was the major nongaseous fermentation product. Highest conversion of available cellulose to ethanol was obtained with strain Q10 (90-96%), under microaerophilic conditions. Ethanol production decreased when microcrystalline cellulose and lignocellulosic substrates were used. Copyright © 1996 by Humana Press Inc. All rights of any nature whatsoever reserved.
dc.description57-58
dc.description
dc.description399
dc.description406
dc.descriptionOrpin, C.G., (1975) J. Gen. Microbiol., 91, pp. 249-262
dc.descriptionOrpin, C.G., (1977) J. Gen. Microbiol., 99, pp. 107-117
dc.descriptionBauchop, T., (1989) Biosystems, 23, pp. 53-64
dc.descriptionKostiukovskii, V.A., Okunev, O.N., Tarakanov, B.V., (1990) Mikrobiologiia, 59, pp. 1067-1074
dc.descriptionPhillips, M.W., Gordon, G.L., (1988) Biosystems, 21, p. 377
dc.descriptionTeunissen, M.J., Op Den Camp, H.J., Orpin, C.G., Huis In't Veld, J.H., Vogels, G.D., (1991) J. Gen. Microbiol., 137, p. 1401
dc.descriptionTeunissen, M.J., Smith, A.A.M., Op Den Camp, H.J., Orpin, C.G., Huis In't Veld, J.H., Vogels, G.D., (1991) Arch. Microbiol., 156, pp. 290-296
dc.descriptionBarichievich, E.M., Calza, R.E., (1990) Appl. Environ. Microbiol., 56, pp. 43-48
dc.descriptionLowe, S.E., Theodorou, M.K., Trincy, A.P., (1987) Appl. Environ. Microbiol., 53, pp. 1216-1223
dc.descriptionOrpin, C.G., (1988) Biosystems, 21, pp. 365-370
dc.descriptionTeunissen, M.J., Op Den Camp, H.J., (1993) Antonie Van Leeuwenhoek, 63, pp. 63-76
dc.descriptionWilson, C.A., Wood, T.M., (1992) Enzyme Microb. Technol., 14, pp. 258-264
dc.descriptionAkin, D.E., (1987) Anim. Feed Sci. Technol., 16, pp. 273-285
dc.descriptionAkin, D.E., Borneman, W.S., (1990) J. Dairy Sci., 73, pp. 3023-3032
dc.descriptionAkin, D.E., Borneman, W.S., Windham, W.R., (1988) Biosystems, 21, pp. 385-391
dc.descriptionAkin, D.E., Rigsby, L.L., (1987) Appl. Environ. Microbiol., 53, pp. 1987-1995
dc.descriptionWubah, D.A., Akin, D.E., Borneman, W.S., (1993) Critical Rev. Microbiol., 19, pp. 99-115
dc.descriptionDurrant, L.R., Canale-Parola, E., Leschine, S.B., (1995) The Significance and Regulation of Soil Biodiversity, , Collins, H. P., Robertson, G. P., and Klug, M. J., eds., Kluwe Academic, The Netherlands
dc.descriptionLeschine, S.B., Canale-Parola, E., (1983) Appl. Environ. Microbiol., 46, pp. 728-737
dc.descriptionHungate, R.E., (1969) Methods in Microbiology, 3 B. , Norris, J. R. and Ribbons, D. W., eds., Academic, New York
dc.descriptionMiller, G.L.R., Blum, R., Glennon, W.E., Burton, A.L., (1960) Anal. Biochem., 2, pp. 127-132
dc.descriptionBradford, M.M., (1976) Anal. Biochem., 72, pp. 248-254
dc.descriptionKawai, S., Umezawa, T., Higushi, T., (1988) Arch. Biochem. Biophys., 262 (1), pp. 99-110
dc.descriptionHarkin, J.M., Obst, Jr., (1973) Experimentia, 29, pp. 381-508
dc.descriptionChristakopoulos, P., Macris, B., Kekos, D., (1989) Enzyme Microb. Technol., 11, pp. 236-239
dc.descriptionChristakopoulos, P., Koullas, D.P., Kekos, D., Koukios, E.G., Macris, B., (1991) Enzyme Microb. Technol., 13, pp. 272-274
dc.descriptionMorohoshi, N., (1991) Enzymes in Biomass Conversion, , Leatham, G. F. and Himmel, M. E., eds., ACS Symposium Series 460. ACS, Washington, DC
dc.descriptionSingh, A., Kumar, P.K., Schuger, K., (1992) Biochem. Int., 27, pp. 831-839
dc.descriptionSingh, A., Kumar, P.K., Schuger, K., (1992) Biotechnol. Appl. Biochem., 16, pp. 296-302
dc.languageen
dc.publisher
dc.relationApplied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleEthanol Production From Cellulose By Two Lignocellulolytic Soil Fungi
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución