dc.creatorCappelli A.P.
dc.creatorZoppi C.C.
dc.creatorBarbosa-Sampaio H.C.
dc.creatorCosta J.M.
dc.creatorProtzek A.O.
dc.creatorMorato P.N.
dc.creatorBoschero A.C.
dc.creatorCarneiro E.M.
dc.date2014
dc.date2015-06-25T17:52:38Z
dc.date2015-11-26T14:18:29Z
dc.date2015-06-25T17:52:38Z
dc.date2015-11-26T14:18:29Z
dc.date.accessioned2018-03-28T21:19:45Z
dc.date.available2018-03-28T21:19:45Z
dc.identifier
dc.identifierLiver International. Blackwell Publishing Ltd, v. 34, n. 5, p. 771 - 783, 2014.
dc.identifier14783223
dc.identifier10.1111/liv.12291
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84897958652&partnerID=40&md5=8e3bdb13c051954cb42862d0d10b2876
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86305
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86305
dc.identifier2-s2.0-84897958652
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243652
dc.descriptionBackground & Aims: Obese protein malnourished mice display liver insulin resistance and taurine (TAU) seems to attenuate this effect. The association between early-life malnutrition and hepatic redox balance in diet-induced insulin resistance is unknown. We investigated TAU supplementation effects upon liver redox state and insulin signalling in obese protein malnourished mice. Methods: Weaned male C57BL-6 mice were fed a control (14% protein - C) or a protein-restricted diet (6% protein - R) for 6 weeks. Afterwards, mice received a high-fat diet (34% fat - HFD) for 8 weeks (CH - RH). Half of the HFD-mice were supplemented with TAU (5%) throughout the treatment (CHT - RHT). Body and tissues' weight, respiratory quotient (RQ), glucose tolerance and insulin sensitivity, hepatic oxidant and antioxidant markers and insulin cascade proteins were assessed. Results: Protein restriction leads to typical features whereas HFD was able to induce a catch-up growth in RH. HFD-groups showed higher energy intake and adiposity, lower energy expenditure and altered RQ. Glucose tolerance and insulin sensitivity were impaired in HFD-groups and TAU attenuated these effects. H2O2 content was increased in CHT and RHT despite no differences in antioxidant enzymes and GSH concentration. AKT and PTEN phosphorylation were significantly increased in CHT but not in RHT. Conclusion: Our data provide evidence for an association between TAU-induced improved glycaemic control because of PTEN inactivation and higher AKT phosphorylation. These effects seem to be related with altered hepatic redox balance in obese mice, and this effect is impaired by protein malnutrition. © 2013 John Wiley & Sons A/S.
dc.description34
dc.description5
dc.description771
dc.description783
dc.descriptionBashan, N., Kovsan, J., Kachko, I., Ovadia, H., Rudich, A., Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species (2009) Physiol Rev, 89, pp. 27-71
dc.descriptionGoldstein, B.J., Mahadev, K., Wu, X., Zhu, L., Motoshima, H., Role of insulin-induced reactive oxygen species in the insulin signaling pathway (2005) Antioxid Redox Signal, 7, pp. 1021-1031
dc.descriptionMahadev, K., Motoshima, H., Wu, X., The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction (2004) Mol Cell Biol, 24, pp. 1844-1854
dc.descriptionMukherjee, S.P., Lynn, W.S., Role of cellular redox state and glutathione in adenylate cyclase activity in rat adipocytes (1979) Biochim Biophys Acta, 568, pp. 224-233
dc.descriptionHigaki, Y., Mikami, T., Fujii, N., Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway (2008) Am J Physiol Endocrinol Metab, 294, pp. E889-E897
dc.descriptionde Keizer, P.L., Burgering, B.M., Dansen, T.B., Forkhead box o as a sensor, mediator, and regulator of redox signaling (2011) Antioxid Redox Signal, 14, pp. 1093-1106
dc.descriptionMonteiro, H.P., Arai, R.J., Travassos, L.R., Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling (2008) Antioxid Redox Signal, 10, pp. 843-889
dc.descriptionFeres, N.H., Reis, S.R., Veloso, R.V., Soybean diers the insulin-signaling pathway in the liver of rats recovering from early-life malnutrition (2010) Nutrition, 26, pp. 441-448
dc.descriptionLalli, C.A., Pauli, J.R., Prada, P.O., Statin modulates insulin signaling and insulin resistance in liver and muscle of rats fed a high-fat diet (2008) Metabolism, 57, pp. 57-65
dc.descriptionBegriche, K., Massart, J., Robin, M.A., Bonnet, F., Fromenty, B., Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease (2013) Hepatology, , Early view
dc.descriptionSpoelstra, M.N., Mari, A., Mendel, M., Kwashiorkor and marasmus are both associated with impaired glucose clearance related to pancreatic beta-cell dysfunction (2012) Metabolism, 61, pp. 1224-1230
dc.descriptionHansen, S.H., Andersen, M.L., Cornett, C., Gradinaru, R., Grunnet, N., A role for taurine in mitochondrial function (2010) J Biomed Sci, 17 (SUPPL. 1), pp. S23
dc.descriptionIto, T., Pastukh, V., Solodushko, V., Azuma, J., Schaffer, S.W., Effect of taurine on protein kinase C isoforms: role in taurine's actions? (2009) Adv Exp Med Biol, 643, pp. 3-11
dc.descriptionSchaffer, S.W., Azuma, J., Mozaffari, M., Role of antioxidant activity of taurine in diabetes (2009) Can J Physiol Pharmacol, 87, pp. 91-99
dc.descriptionMilitante, J.D., Lombardini, J.B., Schaffer, S.W., The role of taurine in the pathogenesis of the cardiomyopathy of insulin-dependent diabetes mellitus (2000) Cardiovasc Res, 46, pp. 393-402
dc.descriptionBatista, T.M., Ribeiro, R.A., da Silva, P.M., Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet (2012) Mol Nutr Food Res, 57, pp. 423-434
dc.descriptionBatista, T.M., Ribeiro, R.A., Amaral, A.G., Taurine supplementation restores glucose and carbachol-induced insulin secretion in islets from low-protein diet rats: involvement of Ach-M3R, Synt 1 and SNAP-25 proteins (2012) J Nutr Biochem, 23, pp. 306-312
dc.descriptionFagot-Campagna, A., Emergence of type 2 diabetes mellitus in children: epidemiological evidence (2000) J Pediatr Endocrinol Metab, 13 (SUPPL. 6), pp. 1395-1402
dc.descriptionSilva, A.A., Santos, C.J., Amigo, H., Birth weight, current body mass index, and insulin sensitivity and secretion in young adults in two Latin American populations (2012) Nut Metab Cardiovasc Dis, 22, pp. 533-539
dc.descriptionReeves, P.G., Rossow, K.L., Lindlauf, J., Development and testing of the AIN-93 purified diets for rodents: results on growth, kidney calcification and bone mineralization in rats and mice (1993) J Nutr, 123, pp. 1923-1931
dc.descriptionScott, A.M., Atwater, I., Rojas, E., A method for the simultaneous measurement of insulin release and B cell membrane potential in single mouse islets of Langerhans (1981) Diabetologia, 21, pp. 470-475
dc.descriptionFiliputti, E., Rafacho, A., Araujo, E.P., Augmentation of insulin secretion by leucine supplementation in malnourished rats: possible involvement of the phosphatidylinositol 3-phosphate kinase/mammalian target protein of rapamycin pathway (2010) Metabolism, 59, pp. 635-644
dc.descriptionBradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
dc.descriptionFaure, P., Lafond, J.P., Measurement of plasma sulphydryl and carbonyl groups as a possible indicator of protein oxidation (1995) Analysis of Free Radicals in Biological Systems, pp. 237-248. , Favier AE, ed. Basel: Birkhäuser Verlag
dc.descriptionMuoio, D.M., Noland, R.C., Kovalik, J.P., Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility (2012) Cell Metab, 15, pp. 764-777
dc.descriptionGalgani, J.E., Moro, C., Ravussin, E., Metabolic flexibility and insulin resistance (2008) Am J Physiol Endocrinol Metab, 295, pp. E1009-E1017
dc.descriptionDulloo, A.G., Thrifty energy metabolism in catch-up growth trajectories to insulin and leptin resistance (2008) Best Pract Res Clin Endocrinol Metab, 22, pp. 155-171
dc.descriptionDulloo, A.G., Antic, V., Yang, Z., Montani, J.P., Propellers of growth trajectories to obesity and the metabolic syndrome (2006) Int J Obes, 30 (SUPPL. 4), pp. S1-S3
dc.descriptionMartins, V.J., Toledo Florencio, T.M., Grillo, L.P., Long-lasting effects of undernutrition (2011) Int J Environ Res Public Health, 8, pp. 1817-1846
dc.descriptionDunger, D.B., Salgin, B., Ong, K.K., Session 7: early nutrition and later health early developmental pathways of obesity and diabetes risk (2007) Proc Nutr Soc, 66, pp. 451-457
dc.descriptionSolon, C.S., Franci, D., Ignacio-Souza, L.M., Taurine enhances the anorexigenic effects of insulin in the hypothalamus of rats (2012) Amino Acids, 42, pp. 2403-2410
dc.descriptionHarada, N., Ninomiya, C., Osako, Y., Taurine alters respiratory gas exchange and nutrient metabolism in type 2 diabetic rats (2004) Obes Res, 12, pp. 1077-1084
dc.descriptionMorita, M., Ishida, N., Uchiyama, K., Fatty liver induced by free radicals and lipid peroxidation (2012) Free Radical Res, 46, pp. 758-765
dc.descriptionFetoui, H., Garoui, M., Zeghal, N., Protein restriction in pregnant- and lactating rats-induced oxidative stress and hypohomocysteinaemia in their offspring (2009) J Anim Physiol Anim Nutr, 93, pp. 263-270
dc.descriptionSchmid, E., Hotz-Wagenblatt, A., Hacj, V., Droge, W., Phosphorylation of the insulin receptor kinase by phosphocreatine in combination with hydrogen peroxide: the structural basis of redox priming (1999) FASEB J, 13, pp. 1491-1500
dc.descriptionWu, X., Zhu, L., Zilbering, A., Hyperglycemia potentiates H(2)O(2) production in adipocytes and enhances insulin signal transduction: potential role for oxidative inhibition of thiol-sensitive protein-tyrosine phosphatases (2005) Antioxid Redox Signal, 7, pp. 526-537
dc.descriptionDas, J., Ghosh, J., Manna, P., Sil, P.C., Acetaminophen induced acute liver failure via oxidative stress and JNK activation: protective role of taurine by the suppression of cytochrome P450 2E1 (2010) Free Radical Res, 44, pp. 340-355
dc.descriptionMeshkani, R., Adeli, K., Hepatic insulin resistance, metabolic syndrome and cardiovascular disease (2009) Clin Biochem, 42, pp. 1331-1346
dc.descriptionGarcia-Ruiz, I., Solis-Munoz, P., Gomez-Izquierdo, E., Protein-tyrosine phosphatases are involved in interferon resistance associated with insulin resistance in HepG2 cells and obese mice (2012) J Biol Chem, 287, pp. 19564-19573
dc.descriptionStoker, A.W., Protein tyrosine phosphatases and signalling (2005) J Endocrinol, 185, pp. 19-33
dc.descriptionBence, K.K., Hepatic PTP1B deficiency: the promise of a treatment for metabolic syndrome? (2010) J Clin Metab Diabetes, 1, pp. 27-33
dc.descriptionRoss, A.H., Gericke, A., Phosphorylation keeps PTEN phosphatase closed for business (2009) Proc Natl Acad Sci USA, 106, pp. 1297-1298
dc.languageen
dc.publisherBlackwell Publishing Ltd
dc.relationLiver International
dc.rightsfechado
dc.sourceScopus
dc.titleTaurine-induced Insulin Signalling Improvement Of Obese Malnourished Mice Is Associated With Redox Balance And Protein Phosphatases Activity Modulation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución