dc.creatorCavalcanti S.B.
dc.creatorReyes-Gomez E.
dc.creatorBruno-Alfonso A.
dc.creatorCarvalho C.A.A.D.
dc.creatorOliveira L.E.
dc.date2010
dc.date2015-06-26T12:40:36Z
dc.date2015-11-26T14:17:57Z
dc.date2015-06-26T12:40:36Z
dc.date2015-11-26T14:17:57Z
dc.date.accessioned2018-03-28T21:19:07Z
dc.date.available2018-03-28T21:19:07Z
dc.identifier9789048136339
dc.identifierNato Science For Peace And Security Series B: Physics And Biophysics. , v. , n. , p. 193 - 207, 2010.
dc.identifier18746500
dc.identifier10.1007/978-90-481-3634-6-11
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-76149112285&partnerID=40&md5=57d29235e538c981a4ee20fc9efe0d45
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91345
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91345
dc.identifier2-s2.0-76149112285
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243486
dc.descriptionStudies of the band gap properties of one-dimensional superlattices with alternate layers of air and left-handed materials are carried out within the framework of Maxwell's equations. By left-handed material, we mean a material with dispersive negative electric and magnetic responses. Modeling them by Drude-type responses or by fabricated ones, we characterize the n(ω) = 0 gap, i.e., the zeroth order gap, which has been predicted and detected. The band structure and analytic equations for the band edges have been obtained in the long wavelength limit in case of periodic, Fibonacci, and Thue-Morse superlattices. Our studies reveal the nature of the width of the zeroth order band gap, whose edge equations are defined by null averages of the response functions. Oblique incidence is also investigated, yielding remarkable results. © 2010 Springer Science+Business Media B.V.
dc.description
dc.description
dc.description193
dc.description207
dc.descriptionAndre, A., Lukin, M.D., Manipulating light pulses via dynamically controlled photonic band gap (2002) Phys. Rev. Lett, 89 (14), p. 143602
dc.descriptionBarnes, W.L., Dereux, A., Ebbesen, T.W., Surface plasmon subwavelength optics (2003) Nature, 424 (6950), p. 824
dc.descriptionBria, D., Djafari-Rouhani, B., Akjouj, A., Dobrzynski, L., Vigneron, J.P., El Boudouti, E.H., Nougaoui, A., Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials (2004) Phys. Rev. E, 69 (6), p. 066613
dc.descriptionBruno-Alfonso, A., Reyes-Gomez, E., Cavalcanti, S.B., Oliveira, L.E., Band edge states of the (n) = 0 gap of Fibonacci photonic lattices (2008) Phys. Rev. A, 78 (3), p. 035801
dc.descriptionBruno-Alfonso, A., Reyes-Gómez, E., Cavalcanti, S.B., Oliveira, L.E., Band-edge states of the zeroth-order gap in quasi-periodic photonic superlattices (2008) Photonics, Devices, and Systems IV. Proc. of SPIE, 7138, pp. 71381A. , Tomanek, P, Senderáková, D, Hrabovský, M, eds
dc.descriptionBusch, K., John, S., Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum (1999) Phys. Rev. Lett, 83 (5), p. 967
dc.descriptionCavalcanti, S.B., Dios-Leyva, M., Reyes-Gómez, E., Oliveira, L.E., Band structure and band-gap control in photonic superlattices (2006) Phys. Rev. B, 74 (15), p. 153102
dc.descriptionCavalcanti, S.B., Dios-Leyva, M., Reyes-Gómez, E., Oliveira, L.E., Photonic band structure and symmetry properties of electromagnetic modes in photonic crystals (2007) Phys. Rev. E, 75 (2), p. 026607. , and references therein
dc.descriptionCubuku, E., Aydin, K., Ozbay, E., Foteinopolou, S., Soukoulis, C.M., Subwavelength resolution in a two-dimensional photonic-crystal-based superlens (2003) Phys. Rev. Lett, 91 (20), p. 207401
dc.descriptionDaninthe, H., Foteinopoulou, S., Soukoulis, C.M., Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials (2006) Phot. Nanostruct. Fund. Appl, 4 (3), p. 123
dc.descriptionDuque, C.A., Porras-Montenegro, N., Cavalcanti, S.B., Oliveira, L.E., Photonic band structure evolution of a honeycomb lattice in the presence of an external magnetic field (2009) J. Appl. Phys, 105 (3), p. 034303
dc.descriptionEdwards, B., Alù, A., Young, M.E., Silveirinha, M., Engheta, N., Multifrequency optical invisibility cloak with layered plasmonic shells (2008) Phys. Rev. Lett, 100 (11), p. 033903
dc.descriptionEleftheriades, G.V., Iyer, A.K., Kremer, P.C., Planar negative refractive index media using periodically L-C loaded transmission lines (2002) IEEE Trans. Microwave Theory Tech, 50 (12), p. 2702
dc.descriptionFredkin, D.R., Ron, A., Effectively left-handed (negative index) composite material (2002) Appl. Phys. Lett, 81 (10), p. 1753
dc.descriptionGrbic, A., Eleftheriades, G.V., Experimental verification of backward-wave radiation from a negative refractive index metamaterial (2002) J. Appl. Phys, 92 (10), p. 5930
dc.descriptionJiang, H., Chen, H., Li, H., Zhang, Y., Zhu, S., Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials (2003) Appl. Phys. Lett, 83 (26), p. 5386
dc.descriptionKleckner, T.D., Modotto, D., Locatelli, A., Mondia, J.P., Linden, S., Morandotti, R., De Angelis, C., Aitchison, J.S., Design, fabrication, and characterization of deep-etched waveguide gratings (2005) J. Light. Tech, 23 (12), p. 3832
dc.descriptionKonoplev, I.V., McGrane, P., Cross, A.W., Ronald, K., Phelps, A.D.R., Wave interference and band gap control in multiconductor one-dimensional Bragg structures (2005) J. of Appl. Phys, 97 (7), p. 073101
dc.descriptionKonoplev, I.V., McGrane, P., Phelps, A.D.R., Cross, A.W., Ronald, K., Observation of photonic band-gap control in one-dimensional Bragg structures (2005) Appl. Phys. Lett, 87 (12), p. 121104. , and references therein
dc.descriptionKosaka, H., Kawashima, T., Tomita, A., Notomi, N., Tamamura, T., Sato, T., Kawakami, S., Superprism phenomena in photonic crystals (1998) Phys. Rev. B, 58 (16), p. 10096
dc.descriptionLi, J., Zhou, L., Chan, C.T., Sheng, P., Photonic band gap from a stack of positive and negative index materials (2003) Phys. Rev. Lett, 90 (8), p. 083901
dc.descriptionLiu, L., Caloz, C., Chang, C.C., Itoh, T., Forward coupling phenomena between artificial left-handed transmission lines (2002) J. Appl. Phys, 92 (9), p. 5560
dc.descriptionLonghi, S., Janner, D., Diffraction and localization in low-dimensional photonic bandgaps (2004) Optics Lett, 29 (22), p. 2653
dc.descriptionLord Rayleigh, On the maintenance of vibrations by forces of double frequency and on the propagation of waves through a medium endowed with a periodic structure (1887) Phil. Mag, 24, p. 145
dc.descriptionMaier, S.A., Atwater, H.A., Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures (2005) J. Appl. Phys, 98 (1), p. 011101
dc.descriptionMishra, S., Satpathy, S., One-dimensional photonic crystal: The Kronig-Penney model (2003) Phys. Rev. B, 68 (4), p. 045121
dc.descriptionMurzina, T.V., Sychev, F.Y., Kim, E.M., Rau, E.I., Obydena, S.S., Aktsipetrov, O.A., Bader, M.A., Marowsky, G., One-dimensional photonic crystals based on porous n-type silicon (2005) J. Appl. Phys, 98 (12), p. 123702
dc.descriptionOzbay, E., Plasmonics: Merging photonics and electronics at nanoscale dimensions (2006) Science, 311 (5758), p. 189
dc.descriptionPacheco Jr., J., Grzegorczyk, T.M., Wu, B.-I., Zhang, Y., Kong, J.A., Power propagation in homogeneous isotropic frequency-dispersive left-handed media (2002) Phys. Rev. Lett, 89 (25), p. 257402
dc.descriptionParimi, P.V., Lu, W.T., Vodo, P., Sridhar, S., Photonic crystals - Imaging by flat lens using negative refraction (2003) Nature, 426 (6965), p. 404
dc.descriptionShadrivov, I.V., Zharova, N.A., Kivshar, Y.S., Defect modes and transmission properties of left-handed bandgap structures (2004) Phys. Rev. E, 70 (4), p. 046615
dc.descriptionVeselago, V.G., The electrodynamics of substances with simultaneously negative values of ε and μ (1968) Sov. Phys.-Usp, 10 (4), p. 509
dc.descriptionWang, L., Chen, H., Zhu, S.-Y., Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials (2004) Phys. Rev. B, 70 (24), p. 245102
dc.descriptionWu, L., He, S., Chen, L., On unusual narrow transmission bands for a multi-layered periodic structure containing left-handed materials (2003) Opt. Exp, 11 (11), p. 1283
dc.descriptionWu, L., He, S., Shen, L., Band structure for a one-dimensional photonic crystal containing left-handed materials (2003) Phys. Rev. B, 67 (23), p. 235103
dc.descriptionYariv, A., Yeh, P., (1984) Optical waves in crystals, , John Wiley & Sons, New York
dc.languageen
dc.publisher
dc.relationNATO Science for Peace and Security Series B: Physics and Biophysics
dc.rightsfechado
dc.sourceScopus
dc.titleOn The Photonic Dispersion Of Periodic Superlattices Made Of Left-handed Materials
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución