dc.creatorGoncalves L.M.G.
dc.date2001
dc.date2015-06-26T14:44:07Z
dc.date2015-11-26T14:17:39Z
dc.date2015-06-26T14:44:07Z
dc.date2015-11-26T14:17:39Z
dc.date.accessioned2018-03-28T21:18:46Z
dc.date.available2018-03-28T21:18:46Z
dc.identifier
dc.identifierIeee International Conference On Multisensor Fusion And Integration For Intelligent Systems. , v. , n. , p. 311 - 316, 2001.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0035555921&partnerID=40&md5=0e8eb48c2450ba5b333e49236e4aeb64
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/95282
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/95282
dc.identifier2-s2.0-0035555921
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243395
dc.descriptionWe present current efforts towards an approach for the integration of features extracted from multi-modal sensors, with which to guide the attentional behavior of robotic agents. The model can be applied in many situations and different tasks including top-down or bottom-up aspects of attention control. Basically, a pre-attention mechanism enhances attentional features that are relevant to the current task according to a weight function that can be learned. Then, an attention shift mechanism can select one between the various activated stimuli, in order for a robot to foveate on it. Also, in this approach, we consider the robot moving resources or so to improve the (visual) sensory information.
dc.description
dc.description
dc.description311
dc.description316
dc.descriptionTreisman, A., Selective attention in man (1964) British Medical Bulletin
dc.descriptionTreisman, A., Features and objects in visual processing (1986) Scientific American, 255 (5)
dc.descriptionTsotsos, J.K., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F., Modeling visual attention via selective tuning (1995) Artificial Intelligence, 78 (1-2), pp. 507-547. , October
dc.descriptionVan de Laar, P., Heskes, T.M., Gielen, S., Task-dependent learning of attention (1997) Neural Networks, 10 (6), pp. 981-992. , August
dc.descriptionItti, L., Braun, J., Lee, D.K., Koch, C., A model of early visual processing (1998) Proc. of NIPS'98, pp. 173-179. , Cambridge, MA, MIT Press
dc.descriptionVandapel, N., Hebert, P., Chatila, R., Active and attentive vision for automatic natural landmark selection (1999) Rapport LAAS-CNRS, N99434. , http://doc.laas.fr:8889/, Octobre
dc.descriptionLuo, J., Singhal, A., On measuring low-level saliency in photographic images (2000) Proc. of the IEEE IC-CVPR, 1, pp. 84-89. , June, 13-15th, IEEE Computer Society Press
dc.descriptionMilanese, R., Gil, S., Pun, T., Attentive mechanisms for dynamic and static scene analysis (1995) Optical Engineering, 34 (8)
dc.descriptionRybak, I.A., Gusakova, V.I., Golovan, A.V., Podladchikova, L.N., Shevtsova, N.A., A model of attention-guided visual perception and recognition (1998) Vision Research, 38 (2), pp. 387-400
dc.descriptionWestelius, C.J., (1995) Focus of Attention and Gaze Control for Robot Vision, , Ph.D. thesis, Linköping University, Sweden, S-581 83 Linköping, Sweden, Dissertation No 379, ISBN 91-7871-530-X
dc.descriptionKosslyn, S.M., (1994) Image and Brain. The Resolution of the Imagery Debate, , MIT Press, Cambridge, MA
dc.descriptionBreazeal, C., Scassellati, B., A context-dependent attention system for a social robot (1999) Proc. of the IJCAI, pp. 1146-1151. , Stockholm, Sweden, July 31 - August 6
dc.descriptionGarcia, L.M., Grupen, R., Oliveira, A., Wheeler, D., Fagg, A., Tracing patterns and attention: Humanoid robot cognition (2000) IEEE Intelligent Systems, 15 (4), pp. 70-77. , July/August
dc.descriptionSutton, R.S., Barto, A.G., (1998) Reinforcement Learning: An Introduction, , The MIT Press, Cambridge, MA
dc.languageen
dc.publisher
dc.relationIEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems
dc.rightsfechado
dc.sourceScopus
dc.titleTowards A Learning Model For Feature Integration In Attention Control
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución