dc.creatorSimabuco F.M.
dc.creatorKawahara R.
dc.creatorYokoo S.
dc.creatorGranato D.C.
dc.creatorMiguel L.
dc.creatorAgostini M.
dc.creatorAragao A.Z.B.
dc.creatorDomingues R.R.
dc.creatorFlores I.L.
dc.creatorMacedo C.C.S.
dc.creatorColetta R.D.
dc.creatorGraner E.
dc.creatorPaes Leme A.F.
dc.date2014
dc.date2015-06-25T17:52:34Z
dc.date2015-11-26T14:17:34Z
dc.date2015-06-25T17:52:34Z
dc.date2015-11-26T14:17:34Z
dc.date.accessioned2018-03-28T21:18:41Z
dc.date.available2018-03-28T21:18:41Z
dc.identifier
dc.identifierMolecular Cancer. , v. 13, n. 1, p. - , 2014.
dc.identifier14764598
dc.identifier10.1186/1476-4598-13-24
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84893203138&partnerID=40&md5=6670364090c3a7676fd3d084704c6d53
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86295
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86295
dc.identifier2-s2.0-84893203138
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243375
dc.descriptionBackground: ADAM17 is one of the main sheddases of the cells and it is responsible for the cleavage and the release of ectodomains of important signaling molecules, such as EGFR ligands. Despite the known crosstalk between ADAM17 and EGFR, which has been considered a promising targeted therapy in oral squamous cell carcinoma (OSCC), the role of ADAM17 in OSCC development is not clear. Method: In this study the effect of overexpressing ADAM17 in cell migration, viability, adhesion and proliferation was comprehensively appraised in vitro. In addition, the tumor size, tumor proliferative activity, tumor collagenase activity and MS-based proteomics of tumor tissues have been evaluated by injecting tumorigenic squamous carcinoma cells (SCC-9) overexpressing ADAM17 in immunodeficient mice. Results: The proteomic analysis has effectively identified a total of 2,194 proteins in control and tumor tissues. Among these, 110 proteins have been down-regulated and 90 have been up-regulated in tumor tissues. Biological network analysis has uncovered that overexpression of ADAM17 regulates Erk pathway in OSCC and further indicates proteins regulated by the overexpression of ADAM17 in the respective pathway. These results are also supported by the evidences of higher viability, migration, adhesion and proliferation in SCC-9 or A431 cells in vitro along with the increase of tumor size and proliferative activity and higher tissue collagenase activity as an outcome of ADAM17 overexpression. Conclusion: These findings contribute to understand the role of ADAM17 in oral cancer development and as a potential therapeutic target in oral cancer. In addition, our study also provides the basis for the development of novel and refined OSCC-targeting approaches. © 2014 Simabuco et al.; licensee BioMed Central Ltd.
dc.description13
dc.description1
dc.description
dc.description
dc.descriptionMurphy, G., The ADAMs: signalling scissors in the tumour microenvironment (2008) Nat Rev Cancer, 8, pp. 929-941
dc.descriptionGooz, M., ADAM-17: the enzyme that does it all (2010) Crit Rev Biochem Mol Biol, 45, pp. 146-169. , 10.3109/10409231003628015, 2841225, 20184396
dc.descriptionEdwards, D.R., Handsley, M.M., Pennington, C.J., The ADAM metalloproteinases (2008) Mol Aspects Med, 29, pp. 258-289. , 10.1016/j.mam.2008.08.001, 18762209
dc.descriptionDuffy, M.J., McKiernan, E., O'Donovan, N., McGowan, P.M., Role of ADAMs in cancer formation and progression (2009) Clin Cancer Res, 15, pp. 1140-1144. , 10.1158/1078-0432.CCR-08-1585, 19228719
dc.descriptionBlobel, C.P., ADAMs: key components in EGFR signalling and development (2005) Nat Rev Mol Cell Biol, 6, pp. 32-43. , 10.1038/nrm1548, 15688065
dc.descriptionSheu, J.J.C., Hua, C.H., Wan, L., Lin, Y.J., Lai, M.T., Tseng, H.C., Jinawath, N., Tsai, F.J., Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma (2009) Cancer Res, 69, pp. 2568-2576. , 10.1158/0008-5472.CAN-08-3199, 19276369
dc.descriptionBonner, J., Harari, P.M., Giralt, J., Azarnia, N., Shin, D.M., Cohen, R.B., Jones, C.U., Ang, K.K., Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck (2006) N Engl J Med, 354, pp. 567-578. , 10.1056/NEJMoa053422, 16467544
dc.descriptionHuang, S., Sullivan, B., Oral cancer: current role of radiotherapy and chemotherapy (2013) Med Oral Patol Oral y Cir Bucal, 18, pp. e233-e240
dc.descriptionPetersen, P.E., The world oral health report 2003: continuous improvement of oral health in the 21st century-the approach of the WHO global oral health programme (2003) Community Dent Oral Epidemiol, 31 (SUPPL 1), pp. 3-23
dc.descriptionGschwind, A., Hart, S., Fischer, O., Ullrich, A., TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells (2003) EMBO J, 22, pp. 2411-2421. , 10.1093/emboj/cdg231, 155989, 12743035
dc.descriptionSobral, L.M., Bufalino, A., Lopes, M., Graner, E., Salo, T., Coletta, R.D., Myofibroblasts in the stroma of oral cancer promote tumorigenesis via secretion of activin A (2011) Oral Oncol, 47, pp. 840-846. , 10.1016/j.oraloncology.2011.06.011, 21727023
dc.descriptionPaes Leme, A.F., Sherman, N.E., Smalley, D.M., Sizukusa, L.O., Oliveira, A.K., Menezes, M.C., Fox, J.W., Serrano, S.M.T., Hemorrhagic activity of HF3, a snake venom metalloproteinase: insights from the proteomic analysis of mouse skin and blood plasma (2012) J Proteome Res, 11, pp. 279-291. , 10.1021/pr2006439, 21939285
dc.descriptionRappsilber, J., Mann, M., Ishihama, Y., Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips (2007) Nat Protoc, 2, pp. 1896-1906. , 10.1038/nprot.2007.261, 17703201
dc.descriptionAragão, A.Z.B., Belloni, M., Simabuco, F.M., Zanetti, M.R., Yokoo, S., Domingues, R.R., Kawahara, R., Leme, A.F.P., Novel processed form of syndecan-1 shed from SCC-9 cells plays a role in cell migration (2012) PLoS One, 7, pp. e43521. , 10.1371/journal.pone.0043521, 3419706, 22905270
dc.descriptionCox, J., Mann, M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification (2008) Nat Biotechnol, 26, pp. 1367-1372. , 10.1038/nbt.1511, 19029910
dc.descriptionCox, J., Neuhauser, N., Michalski, A., Scheltema, R., Olsen, J.V., Mann, M., Andromeda: a peptide search engine integrated into the MaxQuant environment (2011) J Proteome Res, 10, pp. 1794-1805. , 10.1021/pr101065j, 21254760
dc.descriptionMcIlwain, D.R., Lang, P.A., Maretzky, T., Hamada, K., Ohishi, K., Maney, S.K., Berger, T., Mak, T.W., IRhom2 Regulation of TACE controls TNF-mediated protection against listeria and responses to LPS (2012) Science, 335, pp. 229-232. , 10.1126/science.1214448, 22246778
dc.descriptionLe Gall, S.M., Maretzky, T., Issuree, P.D., Niu, X.D., Reiss, K., Saftig, P., Khokha, R., Blobel, C.P., ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site (2010) J Cell Sci, 123 (PART 22), pp. 3913-3922. , 2972273, 20980382
dc.descriptionAragão, A.Z.B., Nogueira, M.L.C., Granato, D.C., Simabuco, F.M., Honorato, R.V., Hoffman, Z., Yokoo, S., Paes Leme, A.F., Identification of novel interaction between ADAM17 (a disintegrin and metalloprotease 17) and thioredoxin-1 (2012) J Biol Chem, 287, pp. 43071-43082. , 10.1074/jbc.M112.364513, 3522302, 23105116
dc.descriptionPaes Leme, A.F., Kitano, E.S., Furtado, M.F., Valente, R.H., Camargo, A.C.M., Ho, P.L., Fox, J.W., Serrano, S.M.T., Analysis of the subproteomes of proteinases and heparin-binding toxins of eight bothrops venoms (2009) Proteomics, 9, pp. 733-745. , 10.1002/pmic.200800484, 19137556
dc.descriptionNajy, A.J., Day, K.C., Day, M.L., ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction (2008) Cancer Res, 68, pp. 1092-1099. , 10.1158/0008-5472.CAN-07-2432, 18281484
dc.descriptionMaretzky, T., Evers, A., Zhou, W., Swendeman, S.L., Wong, P.M., Rafii, S., Reiss, K., Blobel, C.P., Migration of growth factor-stimulated epithelial and endothelial cells depends on EGFR transactivation by ADAM17 (2011) Nat Commun, 2, p. 229. , 3074487, 21407195
dc.descriptionZheng, X., Jiang, F., Katakowski, M., Lu, Y., Chopp, M., ADAM17 promotes glioma cell malignant phenotype (2012) Mol Carcinog, 51, pp. 150-164. , 10.1002/mc.20772, 3234333, 21480393
dc.descriptionDas, S., Czarnek, M., Bzowska, M., Mezyk-Kopeć, R., Stalińska, K., Wyroba, B., Sroka, J., Bereta, J., ADAM17 silencing in mouse colon carcinoma cells: the effect on tumoricidal cytokines and angiogenesis (2012) PLoS One, 7, pp. e50791. , 10.1371/journal.pone.0050791, 3519469, 23251384
dc.descriptionLin, P., Sun, X., Feng, T., Zou, H., Jiang, Y., Liu, Z., Zhao, D., Yu, X., ADAM17 regulates prostate cancer cell proliferation through mediating cell cycle progression by EGFR/PI3K/AKT pathway (2012) Mol Cell Biochem, 359, pp. 235-243. , 10.1007/s11010-011-1018-8, 21837402
dc.descriptionPerna, A.F., Sepe, I., Lanza, D., Capasso, R., Zappavigna, S., Capasso, G., Caraglia, M., Ingrosso, D., Hydrogen sulfide reduces cell adhesion and relevant inflammatory triggering by preventing ADAM17-dependent TNF-α activation (2013) J Cell Biochem, 114, pp. 1536-1548. , 10.1002/jcb.24495, 23297114
dc.descriptionRocks, N., Estrella, C., Paulissen, G., Quesada-Calvo, F., Gilles, C., Guéders, M.M., Crahay, C., Cataldo, D.D., The metalloproteinase ADAM-12 regulates bronchial epithelial cell proliferation and apoptosis (2008) Cell Prolif, 41, pp. 988-1001. , 10.1111/j.1365-2184.2008.00557.x, 19040574
dc.descriptionGe, L., Baskic, D., Basse, P., Vujanovic, L., Unlu, S., Yoneyama, T., Vujanovic, A., Vujanovic, N.L., Sheddase activity of tumor necrosis factor-alpha converting enzyme is increased and prognostically valuable in head and neck cancer (2009) Cancer Epidemiol Biomarkers Prev, 18, pp. 2913-2922. , 10.1158/1055-9965.EPI-08-0898, 2784191, 19843672
dc.descriptionStokes, A., Joutsa, J., Ala-Aho, R., Pitchers, M., Pennington, C.J., Martin, C., Premachandra, D.J., Kähäri, V.M., Expression profiles and clinical correlations of degradome components in the tumor microenvironment of head and neck squamous cell carcinoma (2010) Clin Cancer Res, 16, pp. 2022-2035. , 10.1158/1078-0432.CCR-09-2525, 20305301
dc.descriptionKornfeld, J.W., Meder, S., Wohlberg, M., Friedrich, R.E., Rau, T., Riethdorf, L., Löning, T., Riethdorf, S., Overexpression of TACE and TIMP3 mRNA in head and neck cancer: association with tumour development and progression (2011) Br J Cancer, 104, pp. 138-145. , 10.1038/sj.bjc.6606017, 3039790, 21102583
dc.descriptionHinsley, E.E., Hunt, S., Hunter, K.D., Whawell, S.A., Lambert, D.W., Endothelin-1 stimulates motility of head and neck squamous carcinoma cells by promoting stromal-epithelial interactions (2012) Int J Cancer, 130, pp. 40-47. , 10.1002/ijc.25968, 21491424
dc.descriptionYu, C.C., Tsai, L.L., Wang, M.L., Yu, C.H., Lo, W.L., Chang, Y.C., Chiou, G.Y., Chiou, S.-H., MiR145 Targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer (2013) Cancer Res, 71, pp. 3425-3440
dc.descriptionAndrade, L., Geraldo, J.M., Nucleoplasmic calcium buffering sensitizes human squamous cell carcinoma to anticancer therapy (2012) J Cancer Sci Ther, 4, pp. 131-139
dc.descriptionSteelman, L.S., Franklin, R.A., Abrams, S.L., Chappell, W., Kempf, C.R., Bäsecke, J., Stivala, F., McCubrey, J.A., Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy (2011) Leukemia, 25, pp. 1080-1094. , 10.1038/leu.2011.66, 21494257
dc.descriptionRoskoski, R., ERK1/2 MAP kinases: structure, function, and regulation (2012) Pharmacol Res, 66, pp. 105-143. , 10.1016/j.phrs.2012.04.005, 22569528
dc.descriptionDa Silva, S.D., Ferlito, A., Takes, R.P., Brakenhoff, R.H., Valentin, M.D., Woolgar, J.A., Bradford, C.R., Kowalski, L.P., Advances and applications of oral cancer basic research (2011) Oral Oncol, 47, pp. 783-791. , 10.1016/j.oraloncology.2011.07.004, 21802978
dc.descriptionWang, D., Su, L., Huang, D., Zhang, H., Shin, D.M., Chen, Z.G., Downregulation of E-Cadherin enhances proliferation of head and neck cancer through transcriptional regulation of EGFR (2011) Mol Cancer, 10, p. 116. , 10.1186/1476-4598-10-116, 3192774, 21939503
dc.descriptionGuinea-Viniegra, J., Zenz, R., Scheuch, H., Jiménez, M., Bakiri, L., Petzelbauer, P., Wagner, E.F., Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17 (2012) J Clin Invest, 122, pp. 2898-2910. , 10.1172/JCI63103, 3408745, 22772468
dc.descriptionBaldwin, A.S., Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer (2012) Immunol Rev, 246, pp. 327-345. , 10.1111/j.1600-065X.2012.01095.x, 22435564
dc.descriptionPage, A., Cascallana, J.L., Casanova, M.L., Navarro, M., Alameda, J.P., Pérez, P., Bravo, A., Ramírez, A., IKKβ overexpression leads to pathologic lesions in stratified epithelia and exocrine glands and to tumoral transformation of oral epithelia (2011) Mol Cancer Res, 9, pp. 1329-1338. , 10.1158/1541-7786.MCR-11-0168, 21821676
dc.descriptionLu, K.W., Tsai, M.L., Chen, J.C., Hsu, S.C., Hsia, T.C., Lin, M.W., Huang, A.C., Chung, J.G., Gypenosides inhibited invasion and migration of human tongue cancer SCC4 cells through down-regulation of NFkappaB and matrix metalloproteinase-9 (2008) Anticancer Res, 28, pp. 1093-1099
dc.descriptionKwon, H.K., Hwang, J.S., So, J.S., Lee, C.G., Sahoo, A., Ryu, J.H., Jeon, W.K., Im, S.H., Cinnamon extract induces tumor cell death through inhibition of NFkappaB and AP1 (2010) BMC Cancer, 10, p. 392. , 10.1186/1471-2407-10-392, 2920880, 20653974
dc.descriptionBouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.O., Bergamini, G., Croughton, K., Cruciat, C., Superti-Furga, G., A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway (2004) Nat Cell Biol, 6, pp. 97-105. , 10.1038/ncb1086, 14743216
dc.descriptionPrenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C., Ullrich, A., EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF (1999) Nature, 402, pp. 884-888
dc.descriptionZhang, Q., Thomas, S.M., Xi, S., Smithgall, T.E., Siegfried, J.M., Kamens, J., Gooding, W.E., Grandis, J.R., SRC family kinases mediate epidermal growth factor receptor ligand cleavage, proliferation, and invasion of head and neck cancer cells (2004) Cancer Res, 64, pp. 6166-6173. , 10.1158/0008-5472.CAN-04-0504, 15342401
dc.descriptionMcCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Wong, E.W.T., Chang, F., Lehmann, B., Franklin, R.A., Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance (2007) Biochim Biophys Acta, 1773, pp. 1263-1284. , 10.1016/j.bbamcr.2006.10.001, 2696318, 17126425
dc.descriptionMa, L., Lan, F., Zheng, Z., Xie, F., Wang, L., Liu, W., Han, J., Huang, Q., Epidermal growth factor (EGF) and interleukin (IL)-1β synergistically promote ERK1/2-mediated invasive breast ductal cancer cell migration and invasion (2012) Mol Cancer, 11, p. 79. , 10.1186/1476-4598-11-79, 3537707, 23083134
dc.descriptionOdenbach, J., Wang, X., Cooper, S., Chow, F.L., Oka, T., Lopaschuk, G., Kassiri, Z., Fernandez-Patron, C., MMP-2 mediates angiotensin II-induced hypertension under the transcriptional control of MMP-7 and TACE (2011) Hypertension, 57, pp. 123-130. , 10.1161/HYPERTENSIONAHA.110.159525, 21079048
dc.descriptionWang, X., Oka, T., Chow, F.L., Cooper, S.B., Odenbach, J., Lopaschuk, G.D., Kassiri, Z., Fernandez-Patron, C., Tumor necrosis factor-alpha-converting enzyme is a key regulator of agonist-induced cardiac hypertrophy and fibrosis (2009) Hypertension, 54, pp. 575-582. , 10.1161/HYPERTENSIONAHA.108.127670, 19581512
dc.descriptionXiao, L.J., Lin, P., Lin, F., Liu, X., Qin, W., Zou, H.F., Guo, L., Yu, X.G., ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion (2012) Int J Oncol, 40, pp. 1714-1724
dc.languageen
dc.publisher
dc.relationMolecular Cancer
dc.rightsfechado
dc.sourceScopus
dc.titleAdam17 Mediates Oscc Development In An Orthotopic Murine Model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución