dc.creatorCosta J.A.F.
dc.creatorDe Andrade Netto M.L.
dc.date2001
dc.date2015-06-26T14:44:01Z
dc.date2015-11-26T14:17:23Z
dc.date2015-06-26T14:44:01Z
dc.date2015-11-26T14:17:23Z
dc.date.accessioned2018-03-28T21:18:27Z
dc.date.available2018-03-28T21:18:27Z
dc.identifier
dc.identifierProceedings Of Spie - The International Society For Optical Engineering. , v. 4384, n. , p. 16 - 27, 2001.
dc.identifier0277786X
dc.identifier10.1117/12.421088
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0034945862&partnerID=40&md5=e6e422d4440a1a0558673dc4e865700f
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/95258
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/95258
dc.identifier2-s2.0-0034945862
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243322
dc.descriptionClustering is the process of discovering groups within the data, based on similarities, with a minimal, if any, knowledge of their structure. The self-organizing (or Kohonen) map (SOM) is one of the best known neural network algorithms. It has been widely studied as a software tool for visualization of high-dimensional data. Important features include information compression while preserving topological and metric relationship of the primary data items. Although Kohonen maps had been applied for clustering data, usually the researcher sets the number of neurons equal to the expected number of clusters, or manually segments a two-dimensional map using some a priori knowledge of the data. This paper proposes techniques for automatic partitioning and labeling SOM networks in clusters of neurons that may be used to represent the data clusters. Mathematical morphology operations, such as watershed, are performed on the U-matrix, which is a neuron-distance image. The direct application of watershed leads to an oversegmented image. It is used markers to identify significant clusters and homotopy modification to suppress the others. Markers are automatically found by performing a multi-level scan of connected regions of the U-matrix. Each cluster of neurons is a sub-graph that defines, in the input space, complex and nonparametric geometries which approximately describes the shape of the clusters. The process of map partitioning is extended recursively. Each cluster of neurons gives rise to a new map, which are trained with the subset of data that were classified to it. The algorithm produces dynamically a hierarchical tree of maps, which explains the cluster's structure in levels of granularity. The distributed and multiple prototypes cluster representation enables the discoveries of clusters even in the case when we have two or more non-separable pattern classes.
dc.description4384
dc.description
dc.description16
dc.description27
dc.descriptionVinod, V.V., Chaudhury, S., Mukherjee, J., Ghose, S., A connectionist approach for clustering with applications in image analysis (1994) IEEE Trans. Systems, Man & Cybernetics, 24 (3), pp. 356-384
dc.descriptionCosta, J.A.F., (1999) Automatic classification and data analysis by self-organizing neural networks, , Ph.D. Thesis. State University of Campinas, SP, Brazil
dc.descriptionEveritt, B.S., (1993) Cluster Analysis, , Wiley: New York
dc.descriptionKaufman, L., Rousseeuw, P., (1990) Finding Groups in Data: An Introduction to Cluster Analysis, , Wiley: New York
dc.descriptionSu, M.-C., Declaris, N., Liu, T.-K., Application of neural networks in cluster analysis (1997) Proc. of the 1997 IEEE Intl. Conf. on Systems, Man, and Cybernetics, pp. 1-6
dc.descriptionKothari, R., Pitts, D., On finding the number of clusters (1999) Pattern Recognition Letters, 20, pp. 405-416
dc.descriptionHardy, A., (1996) On the number of clusters. Computational Statistics and Data Analysis, 23, pp. 83-96
dc.descriptionJain, A.K., Murty, M.N., Flynn, P.J., Data clustering: A review (1999) ACM Computing Surveys, 31 (3), pp. 264-323
dc.descriptionBall, G., Hall, D., A clustering technique for summarizing multivariate data (1967) Behavioral Science, 12, pp. 153-155
dc.descriptionBezdek, J.C., Pal, N.R., Some new indexes of cluster validity (1998) IEEE Transactions on Systems, Man, and Cybernetics (Part B), 28, pp. 301-315
dc.descriptionHaykin, S., (1999) Neural Networks: A Comprehensive Foundation, , 2nd edition, Prentice-Hall: New York
dc.descriptionKamgar-Parsi, B., Gualtieri, J.A., Devaney, J.E., Kamgar-Parsi, B., Clustering with neural networks (1990) Biological Cybernetics, 63, pp. 201-208
dc.descriptionFrank, T., Kraiss, K.-F., Kuhlen, T., Comparative analysis of fuzzy ART and ART-2A network clustering performance (1998) IEEE Trans. on Neural Networks, 9, pp. 544-559
dc.descriptionKohonen, T., (1997) Self-Organizing Maps, , 2nd Ed., Springer-Verlag: Berlin
dc.descriptionUltsch, A., Self-Organizing Neural Networks for Visualization and Classification (1993) Information and Classification, pp. 301-306. , O. Opitz et al. (Eds)., Springer: Berlin
dc.descriptionGirardin, L., (1995) Cyberspace geography visualization, , heiwww.unige.ch/girardin/cgv
dc.descriptionGonzales, R.C., Woods, R.E., (1992) Digital Image Processing. Reading, , MA: Addison-Wesley
dc.descriptionBarrera, J., Banon, J., Lotufo, R., Mathematical Morphology Toolbox for the Khoros System (1994) Image Algebra and Morphological Image Processing V, 2300, pp. 241-252. , E. Dougherty et al. Eds. Proc. SPIE
dc.descriptionSerra, J., (1982) Image Analysis and Mathematical Morphology, , Academic Press: London
dc.descriptionNajman, L., Schmitt, M., Geodesic Saliency of Watershed Contours and Hierarchical Segmentation (1996) IEEE Trans. on Pattern Analysis and Machine Intelligence, 18, pp. 1163-1173
dc.descriptionBleau, A., Leon, L.J., Watershed-based segmentation and region merging Comp. Vis. Image Underst., 77, pp. 317-370
dc.descriptionCosta, J.A.F., Mascarenhas, N., Netto, M.L.A., Cell nuclei segmentation in noisy images using morphological watersheds (1997) Applications of Digital Image Processing XX., 3164, pp. 314-324. , A. Tescher Ed. Proc. of the SPIE
dc.descriptionCosta, J.A.F., Netto, M.L.A., Estimating the Number of Clusters in Multivariate Data by Self-Organizing Maps (1999) International Journal of Neural Systems, 9 (3), pp. 195-202
dc.descriptionCosta, J.A.F., Netto, M.L.A., Cluster analysis using self-organizing maps and image processing techniques Proc. of the 1999 IEEE Intl. Conf. on Systems, Man, and Cybernetics, , Tokyo, Japan
dc.descriptionNakamura, E., Kehtarnavaz, N., Determining the number of clusters and prototype locations via multi-scale clustering (1998) Pattern Recognition Letters, 19, pp. 1265-1283
dc.descriptionLi, T., Tang, Y., Suen, S., Fang, L., Hierarchical classification and vector quantisation with neural trees (1993) Neurocomputing, 5, pp. 119-139
dc.descriptionRacz, J., Klotz, T., Knowledge representation by dynamic competitive learning techniques Proc. SPIE, 1469, pp. 778-783
dc.descriptionAdams, R., Butchart, K., Davey, N., Hierarchical classification with a competitive evolutionary neural tree (1999) Neural Networks, 12, pp. 541-551
dc.descriptionCosta, J.A.F., Netto, M.L.A., Automatic Data Classification by a Hierarchy of Self-Organizing Maps Proc. 1999 IEEE Intl. Conf. on Systems, Man, and Cybernetics, , Tokyo, Japan
dc.descriptionKoikkalainen, P., Progress with the Tree-Structured Self-Organizing Map (1994) Proc. of the 11 th European Conference on Artificial Intelligence, pp. 211-215
dc.descriptionMiikkulainen, R., Script Recognition with Hierarchical Feature Maps (1990) Connection Science, pp. 83-101
dc.languageen
dc.publisher
dc.relationProceedings of SPIE - The International Society for Optical Engineering
dc.rightsaberto
dc.sourceScopus
dc.titleClustering Of Complex Shaped Data Sets Via Kohonen Maps And Mathematical Morphology
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución