dc.creatorLopes Filho M.C.
dc.creatorNussenzveig Lopes H.J.
dc.date2001
dc.date2015-06-26T14:43:58Z
dc.date2015-11-26T14:17:22Z
dc.date2015-06-26T14:43:58Z
dc.date2015-11-26T14:17:22Z
dc.date.accessioned2018-03-28T21:18:26Z
dc.date.available2018-03-28T21:18:26Z
dc.identifier
dc.identifierJournal Of Mathematical Analysis And Applications. , v. 263, n. 2, p. 447 - 454, 2001.
dc.identifier0022247X
dc.identifier10.1006/jmaa.2001.7619
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0035891472&partnerID=40&md5=7aa43c835a4d513a9b1d7734f4aabc96
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/95236
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/95236
dc.identifier2-s2.0-0035891472
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243318
dc.descriptionGiven a sequence of functions bounded in L1([0, 1]), is it possible to extract a subsequence that is pointwise bounded almost everywhere? The main objective of this note is to present an example showing that this is not possible in general. We will also prove a pair of positive results. We show that if the sequence of functions consists of multiples of characteristic functions of measurable sets, the answer is yes. We also show that it is always possible to extract a subsequence that is pointwise bounded on a countable, dense set of points. © 2001 Academic Press.
dc.description263
dc.description2
dc.description447
dc.description454
dc.descriptionBillingsley, P., (1986) "Probability and Measure", , 2nd ed., Wiley, New York
dc.descriptionDelort, J.-M., Existence de nappes de tourbillon en dimension deux (1991) J. Amer. Math. Soc, 4, pp. 553-586
dc.descriptionFalconer, K., (1990) "Fractal Geometry: Mathematical Foundations and Applications", , Wiley, Chichester
dc.descriptionLopes Filho, M.C., Nussenzveig Lopes, H.J., Xin, Z., Existence of vortex sheets with reflection symmetry in two space dimensions (2001) Arch. Rat. Mech. Anal, 158, pp. 235-257. , IMECC/UNICAMP, submitted for publication
dc.descriptionRoyden, H.L., (1968) "Real Analysis", , 2nd ed., Macmillan, New York
dc.descriptionRudin, W., (1974) "Real and Complex Analysis", , 2nd ed., Tata McGraw-Hill, New Delhi
dc.descriptionSchochet, S., The weak vorticity formulation of the 2D Euler equations and concentration-cancellation (1995) Comm. Partial Differential Equations, 20, pp. 1077-1104
dc.languageen
dc.publisher
dc.relationJournal of Mathematical Analysis and Applications
dc.rightsfechado
dc.sourceScopus
dc.titlePointwise Blow-up Of Sequences Bounded In L1
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución