dc.creatorJianfu Y.
dc.date2001
dc.date2015-06-26T14:43:44Z
dc.date2015-11-26T14:17:04Z
dc.date2015-06-26T14:43:44Z
dc.date2015-11-26T14:17:04Z
dc.date.accessioned2018-03-28T21:18:06Z
dc.date.available2018-03-28T21:18:06Z
dc.identifier
dc.identifierAdvances In Differential Equations. , v. 6, n. 7, p. 769 - 798, 2001.
dc.identifier10799389
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-50449107309&partnerID=40&md5=09aaa166fb762326c32616d06f1c69e7
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/95153
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/95153
dc.identifier2-s2.0-50449107309
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243234
dc.descriptionWe establish in this paper existence results for critical strongly indefinite semilinear elliptic systems defined on both bounded domains and RN.
dc.description6
dc.description7
dc.description769
dc.description798
dc.descriptionAdams, R.A., (1975) Sobolev Spaces, , Academic Press
dc.descriptionAmbrosetti, A., Rabinowitz, P.H., Dual variational methods in critical point theory and applications (1973) J. Funct. Anal., 14, pp. 349-381
dc.descriptionAmbrosetti, A., Srikanth, P.N., Superlinear elliptic problems and the dual principle in critical point theory (1984) J. Math. & Phys., 18, pp. 441-451
dc.descriptionAmbrosetti, A., Struwe, M., A note on the problem -Δu = λu+u|u|2*-1 (1986) Manus. Math., 54, pp. 373-379
dc.descriptionBenci, V., Cerami, G., Positive solutions of some nonlinear elliptic problems in exterior domains (1987) Arch. Rational Mech.Anal., 99, pp. 283-300
dc.descriptionBenci, V., Fortunato, D., The dual method in critical point theory: multiplicity results for indefinite functional (1982) Ann. Mat. Pura Appl., 134, pp. 215-242
dc.descriptionBerestycki, X.X.X., Lions, P.L., Nonlinear scalar field equations, I and II (1983) Arch. Rational Mech. Anal., 82, pp. 313-376
dc.descriptionBergh, J., Löfström, J., (1976) Interpolation Spaces-An Introduction, , Springer-Verlag
dc.descriptionBrèzis, H., Lieb, E., A relation between pointwise convergence of functions and convergence of functionals (1983) Proc. Amer. Math.Soc., 88, pp. 486-490
dc.descriptionBrèzis, H., Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents (1983) Comm. Pure Appl. Math., 36, pp. 437-478
dc.descriptionCosta, D.G., On a class of elliptic systems in RN (1994) Elet.J.D.E., 7, pp. 1-14
dc.descriptionClarke, F.H., Ekeland, I., Hamiltonian trajectories having prescribed minimal period (1980) Comm. Pure Appl. Math., 33, pp. 103-116
dc.descriptionClèment, P.H., de Figueiredo, D.G., Mitidieri, E., Positive solutions of semilinear elliptic systems (1992) Comm. PDE, 17, pp. 923-940
dc.descriptionChang, K.C., (1986) Critical Point Theory and Its Applications, , Shanghai Sci. & Tech. Press
dc.descriptionClèment, P.H., van der Vorst, R.C.A.M., On a semilinear elliptic system (1995) Diff.& Int.Equas., 8, pp. 1317-1329
dc.descriptionde Figueiredo, D.G., Felmer, P.L., On supequadratic elliptic systems (1994) Trans. Amer. Math. Soc., 343, pp. 99-116
dc.descriptionde Figueiredo, D.G., Jianfu, Y., Decay (1998) symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal. TMA, 33, pp. 211-234
dc.descriptionGilbarg, D., Trudinger, N.S., (1983) Elliptic Partial Differential Equations of Second Order, , Springer-Verlag
dc.descriptionHulshof, J., Mitidieri, E., van der Vorst, R., Strongly indefinite systems with critical Sobolev exponents (1998) Trans. Amer. Math. Soc., 350, pp. 2349-2365
dc.descriptionHulshof, J., van der Vorst, R., Differential systems with strongly indefinite variational structure (1993) J. Funct. Anal, 114, pp. 32-58
dc.descriptionHulshof, J., van der Vorst, R., Asymptotic behaviour of ground states (1996) Proc. Amer. Math.Soc., 124, pp. 2423-2431
dc.descriptionLions, P.L., The concentration-compactness principle in the calculus of variations. The locally case I & II (1984) Ann. I. H. Anal. Nonli., 1, pp. 109-283
dc.descriptionLions, P.L., The concentration-compactness principle in the calculus of variations. The limit case I (1985) Rev. Mat. Iber., 1 (1), pp. 145-201
dc.descriptionLions, P.L., The concentration-compactness principle in the calculus of variations. The limit case II (1985) Rev. Mat. Iber., 1 (2), pp. 45-121
dc.descriptionMitidieri, E., A Rellich type identity and applications (1993) Comm. PDE, 18 (1-2), pp. 125-151
dc.descriptionMawhin, J., Willem, M., (1993) Critical Point Theory and Hamiltonian Systems, , Springer-Verlag
dc.descriptionRabinowitz, P., Minimax methods in critical point theory with applications to differential equations (1986) CBMS Regional Conf. Ser. in Math., (65). , Amer. Math. Soc., Providence, R.I
dc.descriptionStrauss, W., Existence of solitary waves in higher dimensions (1977) Comm. Math. Phys., 55, pp. 149-162
dc.descriptionvanderVorst, R.C.A.M., Variational identities and applications to differential systems (1991) Arch. Rational Mech. Anal., 116, pp. 375-398
dc.descriptionvanderVorst, R.C.A.M., Best constant for the embedding of H2nH1 o into L2N/(N-4) (1993) Diff. & Int. Equas., 6 (2), pp. 259-276
dc.descriptionWang, X.J., Sharp constant in Sobolev inequality (1993) Nonlinear Anal. TMA, 20 (3), pp. 261-268
dc.descriptionJianfu, Y., Xiping, Z., On the existence of nontrivial solution of a quasilinear elliptic boundary value problem for unbounded domains (1987) Acta Math. Sci., 7, pp. 341-359
dc.languageen
dc.publisher
dc.relationAdvances in Differential Equations
dc.rightsfechado
dc.sourceScopus
dc.titleOn Critical Semilinear Elliptic Systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución