dc.creator | Gomes S.M. | |
dc.creator | Kushpel A.K. | |
dc.creator | Levesley J. | |
dc.date | 2001 | |
dc.date | 2015-06-26T14:43:44Z | |
dc.date | 2015-11-26T14:17:02Z | |
dc.date | 2015-06-26T14:43:44Z | |
dc.date | 2015-11-26T14:17:02Z | |
dc.date.accessioned | 2018-03-28T21:18:04Z | |
dc.date.available | 2018-03-28T21:18:04Z | |
dc.identifier | | |
dc.identifier | Journal Of Fourier Analysis And Applications. , v. 7, n. 3, p. 282 - 295, 2001. | |
dc.identifier | 10695869 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-0346485761&partnerID=40&md5=71a669ef27eb155d70215b8052273e37 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/95150 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/95150 | |
dc.identifier | 2-s2.0-0346485761 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1243226 | |
dc.description | In this article we consider a simple method of radial quasi-interpolation by polynomials on the unit sphere in ℝ3, and present rates of convergence for this method in Sobolev spaces of square integrable functions. We write the discrete Fourier series as a quasi-interpolant and hence obtain convergence rates, in the aforementioned Sobolev spaces, for the discrete Fourier projection. We also discuss some typical practical examples used in the context of spherical wavelets. | |
dc.description | 7 | |
dc.description | 3 | |
dc.description | 282 | |
dc.description | 295 | |
dc.description | Abramowitz, M., Stegun, I.A., (1964) Handbook of Mathematical Functions, , National Bureau of Standards, Dover Publications | |
dc.description | Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, G., Higher Transcendental Functions (1953) The Bateman Manuscript Project, 2. , McGraw-Hill | |
dc.description | Driscoll, J.R., Healy, D.M., Computing Fourier transforms and convolutions on the 2-sphere (1994) Advances in Applied Mathematics, 15, pp. 202-250 | |
dc.description | Fasshauer, G.E., Schumaker, L.L., Scattered data fitting on the sphere (1998) Mathematical Methods for Curves and Surfaces, II, pp. 117-166. , (Lillehammer, 1997), Innov. Appl. Math., Vanderbilt University Press, Nashville, TN | |
dc.description | Freeden, W., Gervens, T., Schreiner, M., (1998) Constructive Approximation on the Sphere, , Claredon Press | |
dc.description | Freeden, W., Windheuser, U., Combined spherical harmonic and wavelet expansion - A future concept in earth's gravitational determination (1997) Appl. Comput. Harmon. Anal., 4, pp. 1-37 | |
dc.description | Kushpel, A.K., Levesley, J., Quasi-interpolation on the 2-sphere using radial polynomials (2000) J. Approx. Theory, 102, pp. 141-154 | |
dc.description | Muller, C., Spherical harmonics (1966) Lecture Notes in Mathematics, 17. , Springer Verlag | |
dc.description | Orzag, S.A., Transform method for the calculation of vector-coupled sums: Applications to spectral form of the vorticity equation (1970) J. Atmosph. Sci., 27, pp. 890-895 | |
dc.description | Potts, D., Steidl, G., Tasche, M., Kernels of spherical harmonics and spherical frames (1996) Advanced Topics in Multivariate Approximation, , Fontanella, F., et al., Eds., World Science Publishing, River Edge, NJ | |
dc.description | Powell, M.J.D., The theory of radial basis functions in 1990 (1992) Advances in Numerical Analysis II: Wavelets, Subdivision, and Radial Basis Functions, , Light, W.A., Ed., Oxford University Press, Oxford | |
dc.description | Reimer, M., Hyperinterpolation on the sphere at the minimal projection order (2000) J. Approx. Theory, 104, pp. 272-286 | |
dc.description | Schreiner, M., A pyramid scheme for spherical wavelets (1996) AGTM Report 170, , University of Kaiserslauten | |
dc.description | Sloan, I.H., Interpolation and hyperinterpolation on the sphere (1997) Multivariate Approximation, pp. 255-268. , (Witten-Bommerholz, 1996) | |
dc.description | Math. Res., 101. , Akademie Verlag, Berlin | |
dc.description | Szegö, G., (1959) Orthogonal Polynomials, 23. , American Mathematical Society Colloquium Publications American Mathematical Society, Providence, RI | |
dc.description | Jakob-Chien, R., Hack, J.J., Williamson, D.L., Spectral transform solutions to shallow water test sets (1995) J. Comp. Physics, 119, pp. 164-187 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Journal of Fourier Analysis and Applications | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Approximation In L2 Sobolev Spaces On The 2-sphere By Quasi-interpolation | |
dc.type | Artículos de revistas | |