dc.creatorGomes S.M.
dc.creatorKushpel A.K.
dc.creatorLevesley J.
dc.date2001
dc.date2015-06-26T14:43:44Z
dc.date2015-11-26T14:17:02Z
dc.date2015-06-26T14:43:44Z
dc.date2015-11-26T14:17:02Z
dc.date.accessioned2018-03-28T21:18:04Z
dc.date.available2018-03-28T21:18:04Z
dc.identifier
dc.identifierJournal Of Fourier Analysis And Applications. , v. 7, n. 3, p. 282 - 295, 2001.
dc.identifier10695869
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0346485761&partnerID=40&md5=71a669ef27eb155d70215b8052273e37
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/95150
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/95150
dc.identifier2-s2.0-0346485761
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243226
dc.descriptionIn this article we consider a simple method of radial quasi-interpolation by polynomials on the unit sphere in ℝ3, and present rates of convergence for this method in Sobolev spaces of square integrable functions. We write the discrete Fourier series as a quasi-interpolant and hence obtain convergence rates, in the aforementioned Sobolev spaces, for the discrete Fourier projection. We also discuss some typical practical examples used in the context of spherical wavelets.
dc.description7
dc.description3
dc.description282
dc.description295
dc.descriptionAbramowitz, M., Stegun, I.A., (1964) Handbook of Mathematical Functions, , National Bureau of Standards, Dover Publications
dc.descriptionErdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, G., Higher Transcendental Functions (1953) The Bateman Manuscript Project, 2. , McGraw-Hill
dc.descriptionDriscoll, J.R., Healy, D.M., Computing Fourier transforms and convolutions on the 2-sphere (1994) Advances in Applied Mathematics, 15, pp. 202-250
dc.descriptionFasshauer, G.E., Schumaker, L.L., Scattered data fitting on the sphere (1998) Mathematical Methods for Curves and Surfaces, II, pp. 117-166. , (Lillehammer, 1997), Innov. Appl. Math., Vanderbilt University Press, Nashville, TN
dc.descriptionFreeden, W., Gervens, T., Schreiner, M., (1998) Constructive Approximation on the Sphere, , Claredon Press
dc.descriptionFreeden, W., Windheuser, U., Combined spherical harmonic and wavelet expansion - A future concept in earth's gravitational determination (1997) Appl. Comput. Harmon. Anal., 4, pp. 1-37
dc.descriptionKushpel, A.K., Levesley, J., Quasi-interpolation on the 2-sphere using radial polynomials (2000) J. Approx. Theory, 102, pp. 141-154
dc.descriptionMuller, C., Spherical harmonics (1966) Lecture Notes in Mathematics, 17. , Springer Verlag
dc.descriptionOrzag, S.A., Transform method for the calculation of vector-coupled sums: Applications to spectral form of the vorticity equation (1970) J. Atmosph. Sci., 27, pp. 890-895
dc.descriptionPotts, D., Steidl, G., Tasche, M., Kernels of spherical harmonics and spherical frames (1996) Advanced Topics in Multivariate Approximation, , Fontanella, F., et al., Eds., World Science Publishing, River Edge, NJ
dc.descriptionPowell, M.J.D., The theory of radial basis functions in 1990 (1992) Advances in Numerical Analysis II: Wavelets, Subdivision, and Radial Basis Functions, , Light, W.A., Ed., Oxford University Press, Oxford
dc.descriptionReimer, M., Hyperinterpolation on the sphere at the minimal projection order (2000) J. Approx. Theory, 104, pp. 272-286
dc.descriptionSchreiner, M., A pyramid scheme for spherical wavelets (1996) AGTM Report 170, , University of Kaiserslauten
dc.descriptionSloan, I.H., Interpolation and hyperinterpolation on the sphere (1997) Multivariate Approximation, pp. 255-268. , (Witten-Bommerholz, 1996)
dc.descriptionMath. Res., 101. , Akademie Verlag, Berlin
dc.descriptionSzegö, G., (1959) Orthogonal Polynomials, 23. , American Mathematical Society Colloquium Publications American Mathematical Society, Providence, RI
dc.descriptionJakob-Chien, R., Hack, J.J., Williamson, D.L., Spectral transform solutions to shallow water test sets (1995) J. Comp. Physics, 119, pp. 164-187
dc.languageen
dc.publisher
dc.relationJournal of Fourier Analysis and Applications
dc.rightsfechado
dc.sourceScopus
dc.titleApproximation In L2 Sobolev Spaces On The 2-sphere By Quasi-interpolation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución