dc.creatorDe Franca F.O.
dc.creatorBezerra G.
dc.creatorVon Zuben F.J.
dc.date2006
dc.date2015-06-30T18:02:42Z
dc.date2015-11-26T14:16:52Z
dc.date2015-06-30T18:02:42Z
dc.date2015-11-26T14:16:52Z
dc.date.accessioned2018-03-28T21:17:54Z
dc.date.available2018-03-28T21:17:54Z
dc.identifier0780394879; 9780780394872
dc.identifier2006 Ieee Congress On Evolutionary Computation, Cec 2006. , v. , n. , p. 753 - 760, 2006.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-34547340995&partnerID=40&md5=2ec4a2be7fedbb846ef0a17d42d32e1f
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102811
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102811
dc.identifier2-s2.0-34547340995
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243180
dc.descriptionMultimodal optimization algorithms inspired by the immune system are generally characterized by a dynamic control of the population size and by diversity maintenance along the search. One of these proposals, denoted copt-aiNet (artificial immune network for combinatorial optimization), is used to deal with combinatorial problems like the Traveling Salesman Problem (TSP) and other permutation problems. In this paper, the copt-aiNet algorithm is extended and adapted to be applied to an important issue of modern data mining, the biclustering problem. The biclustering approach consists in simultaneously ordering the rows and columns of a given matrix, so that similar elements are grouped together. To illustrate the performance of the proposed method, two bitmap images are scrambled and used as input to the algorithm, and the biclustering procedure tries to restore the original image by grouping the pixels according to the similarity of colors in a neighborhood. Additionally, copt-aiNet is applied to gene expression data clustering, a classical problem of the bioinformatics literature, and its performance is compared with a hierarchical biclustering algorithm. © 2006 IEEE.
dc.description
dc.description
dc.description753
dc.description760
dc.descriptionAgrawal, R., Gehrke, J., Gunopulus, D., Raghavan, P., Automatic subspace clustering of high dimensional data for data mining applications (1998) Proceedings of the ACM/SIGMOD International Conference on Management of Data, pp. 94-105
dc.descriptionY. Cheng and G. M. Church. Biclustering of expression data, In Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology (ISMB '00), 2000, pp. 93-103de Castro, L.N., Timmis, J., An Artificial Immune Network for Multimodal Function Optimization (2002) Proceedings of the IEEE Congress on Evolutionary Computation, 1, pp. 699-674
dc.descriptionde Castro, L.N., Timmis, J., (2002) Artificial Immune Systems: A New Computational Intelligence Approach, , Springer-Verlag
dc.descriptionL. N. de Castro and F. J. Von Zuben. aiNet: An Artificial Immune Network for Data Analysis, In Data Mining: A Heuristic Approach, H. A. Abbass, R. A. Sarker, and C. S. Newton (Eds.), Idea Group Publishing, USA, Chapter XII, 2001, pp. 231-259de Castro, L.N., Von Zuben, F.J., Immune and Neural Network Models: Theoretical and Empirical Comparisons (2001) International Journal of Computational Intelligence and Applications (IJCIA), 3 (1), pp. 239-257
dc.descriptionde Castro, L.N., Von Zuben, F.J., Learning and Optimization Using the Clonal Selection Principle (2002) IEEE Transactions on Evolutionary Computation, 3 (6), pp. 239-251
dc.descriptionde França, F.O., Bio-Inspired Algorithms applied to Dynamic Optimization (2005) FEEC/Unicamp, , December, Master Thesis, School of Electrical and Computer Engineering, State University of Campinas, 139 p, in Portuguese
dc.descriptionde França, F.O., de Castro, L.N., Von Zuben, F.J., An Artificial Immune Network for Multimodal Function Optimization on Dynamic Environments (2005) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 289-296
dc.descriptionde Sousa, J.S., Gomes, L.C.T., Bezerra, G.B., de Castro, L.N., Von Zuben, F.J., An Immune-Evolutionary Algorithm for Multiple Rearrangements of Gene Expression Data (2004) Genetic Programming and Evolvable Machines, 5 (2), pp. 157-179
dc.descriptionDhillon, I.S., Co-clustering documents and words using bipartite spectral graph partitioning (2001) Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'01), pp. 269-274
dc.descriptionEisen, M.B., Spellman, P.T., Brow, P.O., Botstein, D., Cluster Analysis and Display of Genome-wide Expression Patterns (1998) Proc. Natl. Acad. Sci, USA, 95, pp. 14863-14868
dc.descriptionEveritt, B.S., Landau, S., Leese, M., (2001) Cluster Analysis, , Edward Arnold, London
dc.descriptionGetz, G., Levine, E., Domany, E., Coupled two-way clustering analysis of gene microarray data (2000) In Proceedings of the Natural Academy of Sciences USA, pp. 12079-12084
dc.descriptionGlover, F.W., Kochenberger, G.A., (2002) Handbook of Metaheuristics, , Kluwer Academic Publishers
dc.descriptionHartigan, J.A., Direct clustering of a data matrix (1972) Journal of the American Statistical Association (JASA), 67 (337), pp. 123-129
dc.descriptionHaixun, W., Wei, W., Jiong, Y., Yu, P.S., Clustering by pattern similarity in large data sets (2002) Proceedings of the 2002 ACM SIGMOD Int. Conf. on Management of Data, pp. 394-405
dc.descriptionHartigan, J.A., Direct clustering of a data matrix (1972) Journal of the American Statistical Association (JASA), 67 (337), pp. 123-129
dc.descriptionJerne, N.K., Towards a Network Theory of the Immune System Ann. Immunol, (Cand 1974), pp. 373-389. , Inst. Pasteur, 1.25
dc.descriptionJiong, Y., Wei, W., Haixun, W., Philip, Y., Æ-clusters: Capturing subspace correlation in a large data set (2002) Proceedings of the 18th IEEE Int. Conference on Data Engineering, pp. 517-528
dc.descriptionM. Kapushesky, P. Kemmeren, A.C. Culhane, S. Durinck, J. Ihmels, C. Körner, M. Kull, A. Torrente, U. Sarkans, J. Vilo and A. Brazma. Expression Profiler: next generation - an online platform for analysis of microarray data. Nucleic Acids Research, 2004, 32 (Web Server issue):W465-W470Liu, J., Wang, W., Op-cluster: Clustering by tendency in high dimensional space (2003) Proceedings of the 3rd IEEE International Conference on Data Mining, pp. 187-194
dc.descriptionMadeira, S.C., Oliveira, A.L., Biclustering algorithms for biological data analysis: A survey (2004) IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1 (1), pp. 24-45
dc.descriptionMahfoud, S.W., (1995) Niching Methods for Genetic Algorithms, , Illinois Genetic Algorithms Laboratory, Illinois, IL, IlliGAL Report no. 95001, May
dc.descriptionMendes, A., Cotta, C., Garcia, V., Franca, P., Moscato, P., Parallel Memetic Algorithms for Gene Ordering in Microarray Data (2005) Proceedings of the 1st Worshop on Parallel Bioinspired Algorithms, pp. 604-611. , IEEE Computer Society Press, Oslo, Norway, June
dc.descriptionMoscato, P., Berretta, R., Mendes, A., A New Memetic Algorithm for Ordering Datasets: Applications in Microarray Analysis (2005) Proc. of the MIC2005 - The 6th Metaheuristics International Conference, pp. 695-700. , K.F. Doerner et al, eds, Vienna, Austria, August
dc.descriptionOprea, M., Antibody Repertoires and Pathogen Recognition: The Role of Germline Diversity and Somatic Hypermutation (1999), Ph.D. Dissertation, University of New Mexico, EUAPerelson, A.S., Immune Network Theory (1989) Imm. Rev, (110), pp. 5-36
dc.descriptionSegal, E., Taskar, B., Gasch, A., Friedman, N., Koller, D., Rich probabilistic models for gene expression (2001) In Bioinformatics, 17 (SUPPL. 1), pp. S243-S252
dc.descriptionQ. Sheng, Y. Moreau, and B. De Moor. Biclustering micrarray data by Gibbs sampling. In Bioinformatics, 2003, 19 (Suppl. 2), pp. ii196-ii205Storb, U., Progrese in Understanding the Mechanisms and Consequences of Somatic Hypermutation (1998) Immun. Rev, (162), pp. 5-11
dc.descriptionTang, C., Zhang, L., Zhang, I., Ramanathan, M., Interrelated two-way clustering: An unsupervised approach for gene expression data analysis (2001) Proceedings of the 2nd IEEE International Symposium on Bioinformatics and Bioengineering, pp. 41-48
dc.descriptionWhitley, D., Rana, S., Heckendorn, R.B., Island Model Genetic Algorithms and Linearly Separable Problems (1997) Lecture Notes in Computer Science, 1305, pp. 109-125. , Proceedings of the AISB Workshop on Evolutionary Computation, D. Corne and J. L. Shapiro Eds
dc.languageen
dc.publisher
dc.relation2006 IEEE Congress on Evolutionary Computation, CEC 2006
dc.rightsfechado
dc.sourceScopus
dc.titleNew Perspectives For The Biclustering Problem
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución