dc.creatorGhiraldini F.G.
dc.creatorSilveira A.B.
dc.creatorKleinjan D.A.
dc.creatorGilbert N.
dc.creatorMello M.L.S.
dc.date2014
dc.date2015-06-25T17:52:28Z
dc.date2015-11-26T14:16:50Z
dc.date2015-06-25T17:52:28Z
dc.date2015-11-26T14:16:50Z
dc.date.accessioned2018-03-28T21:17:53Z
dc.date.available2018-03-28T21:17:53Z
dc.identifier
dc.identifierBmc Endocrine Disorders. Biomed Central Ltd., v. 14, n. , p. - , 2014.
dc.identifier14726823
dc.identifier10.1186/1472-6823-14-19
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84898600279&partnerID=40&md5=43d2f89b41b8be2cce35180df0ca1a3e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86277
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86277
dc.identifier2-s2.0-84898600279
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243175
dc.descriptionBackground: Hyperglycemia induces chromatin remodeling with consequences on differential gene expression in mouse hepatocytes, similar to what occurs during aging. The liver is the central organ for the regulation of glucose homeostasis and xenobiotic and lipid metabolism and is affected by insulin signaling. The precise transcriptional profiling of the type-1 diabetic liver and its comparison to aging have not been elucidated yet. Methods: Here, we studied the differential genomic expression of mouse liver cells under adult hyperglycemic and aged normoglycemic conditions using expression arrays. Results: Differential gene expression involved in an increase in glucose and impaired lipid metabolism were detected in the type-1 diabetic liver. In this regard, Ppargc1a presents an increased expression and is a key gene that might be regulating both processes. The differential gene expression observed may also be associated with hepatic steatosis in diabetic mouse liver, as a secondary disease. Similarly, middle-aged mice presented differential expression of genes involved in glucose, lipid and xenobiotic metabolism. These genes could be associated with an increase in polyploidy, but the consequences of differential expression were not as drastic as those observed in diabetic animals. Conclusions: Taken together, these findings provide new insights into gene expression profile changes in type-1 diabetic liver. Ppargc1a was found to be the key-gene that increases glucose metabolism and impairs lipid metabolism impairment. The novel results reported here open new areas of investigation in diabetic research and facilitate the development of new strategies for gene therapy. © 2014 Ghiraldini et al.; licensee BioMed Central Ltd.
dc.description14
dc.description
dc.description
dc.description
dc.descriptionValentine, N., Van de Laar, F.A., van Driel, M.L., Adenosine-diphosphate (ADP) receptor antagonists for the prevention of cardiovascular disease in type 2 diabetes mellitus (2012) Cochrane Database Syst Rev, 11, pp. cd005449
dc.descriptionOnitilo, A.A., Engel, J.M., Glurich, I., Stankowski, R.V., Williams, G.M., Doi, S.A., Diabetes and cancer: risk, survival and implications for screening (2012) Cancer Causes Control, 23, pp. 967-981. , 10.1007/s10552-012-9972-3, 22552844
dc.descriptionStout, R.W., Diabetes atherosclerosis and aging (1990) Diabetes Care, 13, pp. 20-23
dc.descriptionCao, S.X., Dhahbi, J.M., Mote, P.L., Spindler, S.R., Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice (2001) PNAS, 98, pp. 10630-10635. , 10.1073/pnas.191313598, 58517, 11535822
dc.descriptionGhiraldini, F.G., Silva, I.S., Mello, M.L.S., Polyploidy and chromatin remodeling in hepatocytes from insulin-dependent diabetic and normoglycemic aged mice (2012) Cytometry, 81, pp. 755-764
dc.descriptionGhiraldini, F.G., Crispim, A.C.V., Mello, M.L.S., Effects of hyperglycemia and aging on nuclear sirtuins and DNA damage of mouse hepatocytes (2013) Mol Biol Cell, 24, pp. 2467-2476. , 10.1091/mbc.E13-04-0186, 3727938, 23761075
dc.descriptionLan, H., Ravaglia, M.E., Stoehr, J.P., Nadler, S.T., Schueler, K.L., Zou, F., Yandell, B.S., Attie, A.D., Gene expression profiles of nondiabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility (2003) Diabetes, 52, pp. 688-700. , 10.2337/diabetes.52.3.688, 12606510
dc.descriptionKodama, K., Butte, A.J., Creusot, R.J., Su, L., Sheng, D., Hartnett, M., Iwai, H., Fathman, C.G., Tissue- and age-specific changes in gene expression during disease induction and progression in NOD mice (2008) Clin Immunol, 129, pp. 195-201. , 10.1016/j.clim.2008.07.028, 2592195, 18801706
dc.descriptionDhahbi, J.M., Mote, P.L., Cao, S.X., Spindler, S., Hepatic gene expression profiling of streptozotocin-induced diabetes (2003) Diabetes Technol Ther, 5, pp. 411-420. , 10.1089/152091503765691910, 12828825
dc.descriptionZhang, F., Xu, X., Zhang, Y., Zhou, B., He, Z., Zhai, Q., Gene expression profile analysis of type 2 diabetic mouse liver (2013) Plos One, 8, pp. e57766. , 10.1371/journal.pone.0057766, 3585940, 23469233
dc.descriptionSmyth, G.K., Limma: linear models for microarray data (2005) Bioinformatics and Computational Biology Solutions using R and Bioconductor, pp. 397-420. , New York: Springer New York, Gentleman R, 1
dc.descriptionRodgers, J.T., Lerin, C., Gerhart-Hines, Z., Puigserver, P., Metabolic adaptations through the PGC-1α and SIRT1 pathways (2008) EBS Lett, 582, pp. 46-53
dc.descriptionSingh, B.K., Sinha, R.A., Zhou, J., Xie, S.Y., You, S.H., Gauthier, K., Yen, P.M., FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenesic genes (2013) J Biol Chem, 288, pp. 30365-30372. , 10.1074/jbc.M113.504845, 23995837
dc.descriptionFluiter, K., Berkel, T.J., Scavenger receptor B1(SR-B1) substrates inhibit the selective uptake of high-density-lipoprotein cholesteryl esters by rat parenchymal liver cells (1997) Biochem J, 326, pp. 515-519. , 1218699, 9291126
dc.descriptionSuh, Y.H., Kim, Y., Bang, J.H., Choi, K.S., Lee, J.W., Kim, W.H., Oh, T.J., Jung, M.H., Analysis of gene expression profiles in insulin-sensitive tissues from pre-diabetic and diabetic Zucker diabetic fatty rats (2005) J Mol Endocrinol, 34, pp. 299-315. , 10.1677/jme.1.01679, 15821098
dc.descriptionTargher, G., Bertolini, L., Padovani, R., Rodella, S., Zoppini, G., Pichiri, I., Sorgato, C., Bonora, E., Prevalence of non-alcoholic fatty liver disease and its association with cardiovascular disease in patients with type-1 diabetes (2010) J Hepatol, 53, pp. 713-718. , 10.1016/j.jhep.2010.04.030, 20619918
dc.descriptionAnatskaya, O.V., Vinogradov, A.E., Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver (2007) Genomics, 89, pp. 70-80. , 10.1016/j.ygeno.2006.08.014, 17029690
dc.descriptionJia, L., Betters, J.L., Yu, L., Niemann-pick C1-like 1(NPC1L1) protein in intestinal and hepatic cholesterol transport (2011) Annu Rev Physiol, 73, pp. 239-259. , 10.1146/annurev-physiol-012110-142233, 20809793
dc.descriptionWerstuck, G.H., Lentz, S.R., Daval, S., Hossain, G.S., Sood, S.K., Shi, Y.Y., Zhou, J., Austin, R.C., Homocysteine-induced endoplasmatic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways (2001) J Clin Invest, 107, pp. 1263-1273. , 10.1172/JCI11596, 209295, 11375416
dc.descriptionFernandez-Rojo, M.A., Restall, C., Ferguson, C., Martel, N., Martin, S., Bosch, M., Kassan, A., Parton, R.G., Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration (2012) Hepatology, 55, pp. 1574-1584. , 10.1002/hep.24810, 22105343
dc.descriptionWilliams, K.H., Shackel, N.A., Gorrel, M.D., McLenna, S.V., Twigg, S.M., Diabetes and nonalcoholic fatty liver disease: a pathogenic duo (2013) Endocr Rev, 34, pp. 84-129. , 10.1210/er.2012-1009, 23238855
dc.descriptionPandit, S.K., Westendorp, B., Bruin, A., Physiological significance of polyploidization in mammalian cells (2013) Trends Cell Biol, 23, pp. 556-566. , 10.1016/j.tcb.2013.06.002, 23849927
dc.descriptionGorla, G.R., Malhi, H., Gupta, S., Polyploidy associated with oxidative injury attenuates proliferative potential of cells (2001) J Cell Sci, 114, pp. 2943-2951
dc.descriptionAnatskaya, O.V., Vinogradov, A.E., Somatic polyploidy promotes cell function under stress and energy depletion: evidence from tissue-specific mammal transcriptome (2010) Funct Integr Genomics, 10, pp. 433-446. , 10.1007/s10142-010-0180-5, 20625914
dc.descriptionBerg, J.M., Tymoczko, L., Stryer, L., The integration of metabolism (2002) Biochemistry, , New York: WH Freeman, Berg JM, Tymoczko L, Stryer L, 5
dc.descriptionBondy, S.C., Naderi, S., Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species (1994) Biochem Pharmacol, 48, pp. 155-159. , 10.1016/0006-2952(94)90235-6, 8043018
dc.descriptionHekimi, S., Lapointe, J., Wen, Y., Taking a " good" look at the free radicals in the aging process (2011) Trends Cell Biol, 21, pp. 569-576. , 10.1016/j.tcb.2011.06.008, 21824781
dc.descriptionLopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., Kroemer, G., The hallmarks of aging (2013) Cell, 153, pp. 1194-1217. , 10.1016/j.cell.2013.05.039, 3836174, 23746838
dc.descriptionAmador-Noguez, D., Dean, A., Huang, W., Setchell, K., Moore, D., Darlington, G., Alterations in xenobiotic metabolism in the long-lived little mice (2007) Aging Cell, 6, pp. 453-470. , 10.1111/j.1474-9726.2007.00300.x, 2859448, 17521389
dc.descriptionSheahan, S., Bellamy, C.O.C., Treanor, L., Harrison, D.J., Prost, S., Additive effect of p53, p21 and Rb deletion in triple knockout primary hepatocytes (2004) Oncogene, 23, pp. 1489-1497. , 10.1038/sj.onc.1207280, 14647424
dc.descriptionMossin, L., Blankson, H., Huitfeldt, H., Seglen, P.O., Ploidy-dependet growth and binucleation in cultured rat hepatocytes (1994) Exp Cell Res, 214, pp. 551-560. , 10.1006/excr.1994.1293, 7925649
dc.descriptionScibetta, A.G., Stantangelo, S., Coleman, J., Hall, D., Chaplin, T., Copier, J., Catchpole, S., Taylor-Papadimitriou, J., Functional analysis of the transcriptor repressor PLU-1/JARID1B (2007) Mol Cell Biol, 27, pp. 7220-7235. , 10.1128/MCB.00274-07, 2168894, 17709396
dc.descriptionMargall-Ducos, G., Celton-Morizur, S., Couton, D., Bregerie, O., Desdouets, C., Liver tetraploidization is controlled by a new process of incomplete cytokinesis (2007) J Cell Sci, 120, pp. 3633-3639. , 10.1242/jcs.016907, 17895361
dc.descriptionGupta, S., Hepatic polyploidy and liver growth control (2000) Semin Cancer Biol, 10, pp. 161-171. , 10.1006/scbi.2000.0317, 10936066
dc.descriptionMoraes, A.S., Guaraldo, A.M., Mello, M.L.S., Chromatin supraorganization and extensibility in mouse hepatocytes with development and aging (2007) Cytometry, 71, pp. 28-37
dc.descriptionCelton-Morizur, S., Desdouets, C., Polyploidization of liver cells (2010) Adv Exp Med Biol, 676, pp. 123-135. , 10.1007/978-1-4419-6199-0_8, 20687473
dc.descriptionLiang, X., Ma, L., Thai, N.L., Fung, J.J., Qian, S., Lu, L., The role of liver-derived regulatory dendritic cells in prevention of type-1 diabetes (2006) Immunology, 120, pp. 251-260
dc.descriptionGao, B., Jeong, W., Tian, Z., Liver: an organ with predominant innate immunity (2008) Hepatology, 47, pp. 729-736
dc.languageen
dc.publisherBioMed Central Ltd.
dc.relationBMC Endocrine Disorders
dc.rightsaberto
dc.sourceScopus
dc.titleGenomic Profiling Of Type-1 Adult Diabetic And Aged Normoglycemic Mouse Liver
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución