dc.creatorDemasi A.P.D.
dc.creatorPereira G.A.G.
dc.creatorNetto L.E.S.
dc.date2006
dc.date2015-06-30T18:02:33Z
dc.date2015-11-26T14:16:33Z
dc.date2015-06-30T18:02:33Z
dc.date2015-11-26T14:16:33Z
dc.date.accessioned2018-03-28T21:17:32Z
dc.date.available2018-03-28T21:17:32Z
dc.identifier
dc.identifierFebs Journal. , v. 273, n. 4, p. 805 - 816, 2006.
dc.identifier1742464X
dc.identifier10.1111/j.1742-4658.2006.05116.x
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33644932478&partnerID=40&md5=8f531e8ee25346241f3fbb0f5dc0ec00
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/102798
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/102798
dc.identifier2-s2.0-33644932478
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1243091
dc.descriptionWe investigated the changes in the oxidative stress response of yeast cells suffering mitochondrial dysfunction that could impair their viability. First, we demonstrated that cells with this dysfunction rely exclusively on cytosolic thioredoxin peroxidase I (cTPxI) and its reductant sulfiredoxin, among other antioxidant enzymes tested, to protect them against H2O 2-induced death. This cTPxI-dependent protection could be related to its dual functions, as peroxidase and as molecular chaperone, suggested by mixtures of low and high molecular weight oligomeric structures of cTPxI observed in cells challenged with H2O2. We found that cTPxI deficiency leads to increased basal sulfhydryl levels and transcriptional activation of most of the H2O2-responsive genes, interpreted as an attempt by the cells to improve their antioxidant defense. On the other hand, mitochondrial dysfunction, specifically the electron transport blockage, provoked a huge depletion of sulfhydryl groups after H 2O2 treatment and reduced the H2O 2-mediated activation of some genes otherwise observed, impairing cell defense and viability. The transcription factors Yap1 and Skn7 are crucial for the antioxidant response of cells under inhibited electron flow condition and probably act in the same pathway of cTPxI to protect cells affected by this disorder. Yap1 cellular distribution was not affected by cTpxI deficiency and by mitochondrial dysfunction, in spite of the observed expression alterations of several Yap1-target genes, indicating alternative mechanisms of Yap1 activation/deactivation. Therefore, we propose that cTPxI is specifically important in the protection of yeast with mitochondrial dysfunction due to its functional versatility as an antioxidant, chaperone and modulator of gene expression. © 2006 FEBS.
dc.description273
dc.description4
dc.description805
dc.description816
dc.descriptionHallywell, B., Gutteridge, J.M.C., (1989) Free Radicals in Biology and Medicine*Hallywell B.*Gutteridge J.M.C. 2nd Edn Claredon Press Oxford , Eds)
dc.descriptionFinkel, T., Holbrook, N.J., Oxidants, oxidative stress and the biology of ageing (2000) Nature, 408, pp. 239-247
dc.descriptionJamieson, D.J., Oxidative stress responses of the yeast Saccharomyces cerevisiae (1998) Yeast, 14, pp. 1511-1527
dc.descriptionGrant, C.M., Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions (2001) Mol Microbiol, 39, pp. 533-541
dc.descriptionCollinson, E.J., Grant, C.M., Role of yeast glutaredoxins as glutathione S-transferases (2003) J Biol Chem, 278, pp. 22492-22497
dc.descriptionPark, S.G., Cha, M.K., Jeong, W., Kim, I.H., Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae (2000) J Biol Chem, 275, pp. 5723-5732
dc.descriptionLee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., Toledano, M.B., Yap1 and Skn7 control two specialized oxidative stress regulons in yeast (1999) J Biol Chem, 274, pp. 16040-16046
dc.descriptionCharizanis, C., Juhnke, H., Krems, B., Entian, K.-D., The mitochondrial cytochrome c peroxidase Ccp1 of Sacharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7) (1999) Mol Gen Genet, 262, pp. 437-447
dc.descriptionCosta, V., Moradas-Ferreira, P., Oxidative stress and signal transduction in Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases (2001) Mol Aspects Med, 22, pp. 217-246
dc.descriptionMoye-Rowley, W.S., Transcription factors regulating the response to oxidative stress in yeast (2002) Antioxid Redox Signal, 4, pp. 123-140
dc.descriptionDelaunay, A., Pflieger, D., Barrault, M., Vinh, J., Toledano, M.B., A thiol peroxidase is an H2O2 receptor and redox transducer in gene activation (2002) Cell, 111, pp. 471-481
dc.descriptionGodon, C., Lagniel, G., Lee, J., Buhler, J.M., Kieffer, S., Perrot, M., Boucherie, H., Labarre, J., The H2O2 stimulon in Saccharomyces cerevisiae (1998) J Biol Chem, 273, pp. 22480-22489
dc.descriptionHasan, R., Leroy, C., Isnard, A.-D., Labarre, J., Boy-Marcotte, E., Toledano, M.B., The control of the yeast H2O2 response by the Msn2/4 transcription factors (2002) Mol Microbiol, 45, pp. 233-241
dc.descriptionGorner, W., Durchschlag, E., Martinez-Pastor, M.T., Estruch, F., Ammerer, G., Hamilton, B., Ruis, H., Schuller, C., Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase a activity (1998) Genes Dev, 12, pp. 586-597
dc.descriptionFernandes, L., Rodrigues-Pousada, C., Struhl, K., Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions (1997) Mol Cel Biol, 17, pp. 6982-6993
dc.descriptionDavidson, J.F., Schiestl, R.H., Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae (2001) Mol Cel Biol, 21, pp. 8483-8489
dc.descriptionGuo, J., Lemire, B.D., The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide (2003) J Biol Chem, 278, pp. 47629-47635
dc.descriptionOutten, C.E., Culotta, V.C., A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae (2003) EMBO J, 22, pp. 2015-2024
dc.descriptionBoveris, A., Chance, B., The mitochondrial generation of hydrogen peroxide (1973) Biochem J, 134, pp. 707-716
dc.descriptionTurrens, J.F., Superoxide production by the mitochondrial respiratory chain (1997) Bioscience Reports, 17, pp. 3-8
dc.descriptionCadenas, E., Davies, K.J., Mitochondrial free radical generation, oxidative stress and aging (2000) Free Rad Biol Med, 29, pp. 222-230
dc.descriptionHe, C.H., Masson, J., Ramotar, D., Functional mitochondria are essential for Saccharomyces cerevisiae cellular resistance to bleomycin (1996) Curr Genet, 30, pp. 279-283
dc.descriptionGrant, C.M., MacIver, F.H., Dawes, I.W., Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae (1997) FEBS Lett, 410, pp. 219-222
dc.descriptionNetto, L.E.S., Chae, H.Z., Kang, S.W., Rhee, S.G., Stadtman, E.R., Removal of hydrogen peroxide is involved with the antioxidant properties of thiol specific antioxidant (TSA): TSA possesses thiol peroxidase activity (1996) J Biol Chem, 271, pp. 15315-15321
dc.descriptionHofmann, B., Hecht, H., Flohé, L., Peroxiredoxins (2002) Biol Chem, 383, pp. 347-364
dc.descriptionWood, Z.A., Schroder, E., Harris, J.R., Poole, L.B., Structure, mechanism and regulation of peroxiredoxins (2003) Trends Biochem Sci, 28, pp. 32-40
dc.descriptionInoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., Kimura, A., Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae (1999) J Biol Chem, 274, pp. 27002-27009
dc.descriptionRoss, S.J., Findlay, V.J., Malakasi, P., Morgan, B.A., Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast (2000) Mol Biol Cell, 11, pp. 2631-2642
dc.descriptionVeal, E.A., Findlay, V.J., Day, A.M., Bozonet, S.M., Evans, J.M., Quinn, J., Morgan, B.A., A 2-cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase (2004) Mol Cell, 15, pp. 129-139
dc.descriptionOkazaki, S., Naganuma, A., Kuge, S., Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast (2005) Antioxid Redox Signal, 7, pp. 327-334
dc.descriptionJin, D.Y., Chae, H.Z., Rhee, S.G., Jeang, K.T., Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation (1997) J Biol Chem, 272, pp. 30952-30961
dc.descriptionHaridas, V., Ni, J., Meager, A., TRANK, a novel cytokine that activates NF-kappaB and c-Jun N-terminal kinase (1998) J Immunol, 161, pp. 1-6
dc.descriptionJang, H.H., Lee, K.O., Chi, Y.H., Two enzymes in one: Two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function (2004) Cell, 117, pp. 625-635
dc.descriptionMoon, J.C., Hah, Y.S., Kim, W.Y., Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death (2005) J Biol Chem, 280, pp. 28775-28784
dc.descriptionDemasi, A.P.D., Pereira, G.A.G., Netto, L.E.S., Cytosolic thioredoxin peroxidase I is essencial for the antioxidant defense of yeast with dysfunctional mitochondria (2001) FEBS Lett, 509, pp. 430-434
dc.descriptionBiteau, B., Labarre, J., Toledano, M.B., ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin (2003) Nature, 425, pp. 980-984
dc.descriptionNicholls, D.G., Budd, S.L., Mitochondria and neuronal survival (2000) Physiol Rev, 80, pp. 315-360
dc.descriptionKorshunov, S.S., Skulachev, V.P., Starkov, A.A., High protonic potential actuates a mechanism of reactive oxygen species in mitochondria (1997) FEBS Lett, 416, pp. 15-18
dc.descriptionBarros, M.H., Bandy, B., Tahara, E.B., Kowaltowski, A.J., Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae (2004) J Biol Chem, 279, pp. 49883-49888
dc.descriptionKosower, N.S., Kosower, E.M., Wertheim, B., Correa, W.S., Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide (1969) Biochem Biophys Res Commun, 37, pp. 593-596
dc.descriptionGarrido, E.O., Grant, C.M., Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides (2002) Mol Microbiol, 43, pp. 993-1003
dc.descriptionWong, C., Siu, K., Jin, D., Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable (2004) J Biol Chem, 279, pp. 23207-23213
dc.descriptionMonteiro, G., Kowaltowski, A.J., Barros, M.H., Netto, L.E., Glutathione and thioredoxin peroxidases mediate susceptibility of yeast mitochondria to Ca(2+)-induced damage (2004) Arch Biochem Biophys, 425, pp. 14-24
dc.descriptionTraven, A., Wong, J.M., Xu, D., Sopta, M., Ingles, C.J., Interorganellar communication: Altered nuclear gene expression profiles in a yeast mitochondrial DNA mutant (2001) J Biol Chem, 276, pp. 4020-4027
dc.descriptionEpstein, C.B., Waddle, J.A., Dave, V.H., Thornton, J., MacAttee, T.L., Garner, H.R., Butow, R.A., Genome-wide responses to mitochondrial dysfunction (2001) Mol Biol Cell, 12, pp. 297-308
dc.descriptionKuge, S., Toda, T., Iizuka, N., Nomoto, A., Crm1 (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress (1998) Genes Cells, 3, pp. 521-532
dc.descriptionDelaunay, A., Isnard, A.D., Toledano, M.B., H2O2 sensing through oxidation of the Yap1 transcription factor (2000) EMBO J, 19, pp. 5157-5166
dc.descriptionSeaver, L.C., Imlay, J.A., Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli (2001) J Bacteriol, 183, pp. 7173-7181
dc.descriptionGulshan, K., Rovinsky, S.A., Coleman, S.T., Moye-Rowley, W.S., Oxidant-specific folding of Yap1 regulates both transcriptional activation and nuclear localization (2005) J Biol Chem, 280, pp. 40524-40533
dc.descriptionVeal, E.A., Ross, S.J., Malakasi, P., Peacock, E., Morgan, B.A., Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor (2003) J Biol Chem, 278, pp. 30896-30904
dc.descriptionBozonet, S.M., Findlay, V.J., Day, A.M., Cameron, J., Veal, E.A., Morgan, B.A., Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide (2005) J Biol Chem, 280, pp. 23319-23327
dc.descriptionWheeler, G.L., Trotter, E.W., Dawes, I.W., Grant, C.M., Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors (2003) J Biol Chem, 278, pp. 49920-49928
dc.descriptionWiatrowski, H.A., Carlson, M., Yap1 accumulates in the nucleus in response to carbon stress in Saccharomyces cerevisiae (2003) Eukaryotic Cell, 2, pp. 19-26
dc.descriptionHuang, M., Rio, A., Nicolas, A., Kolodner, R.D., A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations (2003) Proc Natl Acad Sci USA, 100, pp. 11529-11534
dc.descriptionSmith, S., Hwang, J., Banerjee, S., Majeed, A., Grupta, A., Myung, K., Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae (2004) Proc Natl Acad Sci USA, 101, pp. 9039-9044
dc.descriptionNoh, D.Y., Ahn, S.J., Lee, R.A., Kim, S.W., Park, I.A., Chae, H.Z., Overexpression of peroxiredoxin in human breast cancer (2001) Anticancer Res, 21, pp. 2085-2090
dc.descriptionShen, C., Nathan, C., Nonredundant antioxidant defense by multiple two cysteine peroxiredoxins in human prostate cancer cells (2002) Mol Med, 8, pp. 95-102
dc.descriptionKinnula, V.L., Lehtonen, S., Sormunen, R., Kaarteenaho-Wiik, R., Kang, S.W., Rhee, S.G., Soini, Y., Overexpression of peroxiredoxins I, II, III, V and VI in malignant mesothelioma (2002) J Pathol, 196, pp. 316-323
dc.descriptionNeumann, C.A., Krause, D.S., Carman, C.V., Das, S., Dubey, D.P., Abraham, J.L., Bronson, R.T., Etten, R.A., Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumor suppression (2003) Nature, 424, pp. 561-565
dc.descriptionKinnula, V.L., Pääkko, P., Soini, Y., Antioxidant enzymes and redox regulating thiol proteins in malignancies of human lung (2004) FEBS Lett, 569, pp. 1-6
dc.descriptionKrapfenbauer, K., Engidawork, E., Cairns, N., Fountoulakis, M., Lubec, G., Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders (2003) Brain Res, 967, pp. 152-160
dc.descriptionPlaisant, F., Clippe, A., Vander Stricht, D., Knoops, B., Gressens, P., Recombinant peroxiredoxin 5 protects against excitotoxic brain lesions in newborn mice (2003) Free Rad Biol Med, 34, pp. 862-872
dc.descriptionChae, H.Z., Kim, I.H., Kim, K., Rhee, S.G., Cloning, sequencing, and mutation of thiol specific antioxidant gene of TSA (1993) J Biol Chem, 268, pp. 16815-16821
dc.descriptionIzawa, S., Inoue, Y., Kimura, A., Importance of catalase in the adaptive response to hydrogen peroxide: Analysis of acatalasaemic Saccharomyces cerevisiae (1996) Biochem J, 320, pp. 61-67
dc.descriptionBoy-Marcotte, E., Perrot, M., Bussereau, F., Boucherie, H., Jacquet, M., Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae (1998) J Bacteriol, 180, pp. 1044-1052
dc.descriptionSedlak, J., Lindsay, R.H., Estimation of total, protein-bound and nonprotein sulfhydryl groups in tissue with Ellman's reagent (1968) Anal Biochem, 25, pp. 192-205
dc.descriptionAusubel, F.M., Brent, R., Kingstone, R.E., Moore, D.D., Seidman, J.A., Smith, J.A., Struhl, K., (1994) Current Protocols in Molecular Biology, , John Wiley and Sons, Inc Chichester, UK
dc.descriptionKuge, S., Jones, N., Nemoto, A., Regulation of yAP-1 nuclear localization in response to oxidative stress (1997) EMBO J, 16, pp. 1710-1720
dc.languageen
dc.publisher
dc.relationFEBS Journal
dc.rightsfechado
dc.sourceScopus
dc.titleYeast Oxidative Stress Response: Influences Of Cytosolic Thioredoxin Peroxidase I And Of The Mitochondrial Functional State
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución